J Liu, A Skradis, C Kolar, J Kolath, J Anderson, T Lawson, J Talmadge, W H Gmeiner
{"title":"相对于5-FU, FdUMP的细胞毒性增加,体内毒性降低[10]。","authors":"J Liu, A Skradis, C Kolar, J Kolath, J Anderson, T Lawson, J Talmadge, W H Gmeiner","doi":"10.1080/07328319908044843","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of treatment with 5-Fluorouracil (5-FU) is limited, in part, by its inefficient conversion to 5-Fluoro-2'-deoxyuridine-5'-O-monophosphate (FdUMP). We present data indicating that FdUMP[10], designed as a pro-drug for intracellular release of FdUMP, is cytotoxic as a consequence of uptake of the multimeric form. FdUMP[10] is stable in cell culture medium, with more than one-half of the material persisting as multimers of at least six nucleotides after a 48 h incubation at 37 degrees C. FdUMP[10] is more than 400 times more cytotoxic than 5-FU towards human colorectal tumor cells (H630). FdUMP[10] also has decreased toxicity in vivo, with doses as high as 200 mg/kg/day (qdx3) administered to Balb/c mice without morbidity, compared to a maximum tolerated dose of 45 mg/kg/day for 5-FU using the same protocol. FdUMP[10] shows reduced sensitivity to OPRTase- and TK-mediated drug resistance, relative to 5-FU and FdU, respectively, and is much more cytotoxic than 5-FU towards cells that overexpress thymidylate synthase. Thus, FdUMP[10] is less susceptible to resistance mechanisms that limit the clinical utility of 5-FU. The increased cytotoxicity, decreased toxicity in vivo, and reduced sensitivity to drug resistance of FdUMP[10], relative to 5-FU, indicates multimeric FdUMP is potentially valuable as an anti-neoplastic agent, either as a single agent, or in combination with 5-FU.</p>","PeriodicalId":19222,"journal":{"name":"Nucleosides & nucleotides","volume":"18 8","pages":"1789-802"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07328319908044843","citationCount":"22","resultStr":"{\"title\":\"Increased cytotoxicity and decreased in vivo toxicity of FdUMP[10] relative to 5-FU.\",\"authors\":\"J Liu, A Skradis, C Kolar, J Kolath, J Anderson, T Lawson, J Talmadge, W H Gmeiner\",\"doi\":\"10.1080/07328319908044843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The efficacy of treatment with 5-Fluorouracil (5-FU) is limited, in part, by its inefficient conversion to 5-Fluoro-2'-deoxyuridine-5'-O-monophosphate (FdUMP). We present data indicating that FdUMP[10], designed as a pro-drug for intracellular release of FdUMP, is cytotoxic as a consequence of uptake of the multimeric form. FdUMP[10] is stable in cell culture medium, with more than one-half of the material persisting as multimers of at least six nucleotides after a 48 h incubation at 37 degrees C. FdUMP[10] is more than 400 times more cytotoxic than 5-FU towards human colorectal tumor cells (H630). FdUMP[10] also has decreased toxicity in vivo, with doses as high as 200 mg/kg/day (qdx3) administered to Balb/c mice without morbidity, compared to a maximum tolerated dose of 45 mg/kg/day for 5-FU using the same protocol. FdUMP[10] shows reduced sensitivity to OPRTase- and TK-mediated drug resistance, relative to 5-FU and FdU, respectively, and is much more cytotoxic than 5-FU towards cells that overexpress thymidylate synthase. Thus, FdUMP[10] is less susceptible to resistance mechanisms that limit the clinical utility of 5-FU. The increased cytotoxicity, decreased toxicity in vivo, and reduced sensitivity to drug resistance of FdUMP[10], relative to 5-FU, indicates multimeric FdUMP is potentially valuable as an anti-neoplastic agent, either as a single agent, or in combination with 5-FU.</p>\",\"PeriodicalId\":19222,\"journal\":{\"name\":\"Nucleosides & nucleotides\",\"volume\":\"18 8\",\"pages\":\"1789-802\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07328319908044843\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleosides & nucleotides\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07328319908044843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides & nucleotides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07328319908044843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Increased cytotoxicity and decreased in vivo toxicity of FdUMP[10] relative to 5-FU.
The efficacy of treatment with 5-Fluorouracil (5-FU) is limited, in part, by its inefficient conversion to 5-Fluoro-2'-deoxyuridine-5'-O-monophosphate (FdUMP). We present data indicating that FdUMP[10], designed as a pro-drug for intracellular release of FdUMP, is cytotoxic as a consequence of uptake of the multimeric form. FdUMP[10] is stable in cell culture medium, with more than one-half of the material persisting as multimers of at least six nucleotides after a 48 h incubation at 37 degrees C. FdUMP[10] is more than 400 times more cytotoxic than 5-FU towards human colorectal tumor cells (H630). FdUMP[10] also has decreased toxicity in vivo, with doses as high as 200 mg/kg/day (qdx3) administered to Balb/c mice without morbidity, compared to a maximum tolerated dose of 45 mg/kg/day for 5-FU using the same protocol. FdUMP[10] shows reduced sensitivity to OPRTase- and TK-mediated drug resistance, relative to 5-FU and FdU, respectively, and is much more cytotoxic than 5-FU towards cells that overexpress thymidylate synthase. Thus, FdUMP[10] is less susceptible to resistance mechanisms that limit the clinical utility of 5-FU. The increased cytotoxicity, decreased toxicity in vivo, and reduced sensitivity to drug resistance of FdUMP[10], relative to 5-FU, indicates multimeric FdUMP is potentially valuable as an anti-neoplastic agent, either as a single agent, or in combination with 5-FU.