反向传播与广义回归遗传神经网络模型的比较。

Drug design and discovery Pub Date : 1999-07-01
P P Mager, R Reinhardt
{"title":"反向传播与广义回归遗传神经网络模型的比较。","authors":"P P Mager,&nbsp;R Reinhardt","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The results of the backpropagation (BP) and generalized-regression genetic-neural (GRGN) network were compared using a series of nonpeptide arginine vasopressin VI antagonists. It was shown that both approaches are equivalent with respect to the recognition process while the BP network is superior over GRGN if the sample sizes are lowered by cross-validation.</p>","PeriodicalId":11297,"journal":{"name":"Drug design and discovery","volume":"16 1","pages":"49-53"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of backpropagation and generalized-regression genetic-neural network models.\",\"authors\":\"P P Mager,&nbsp;R Reinhardt\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The results of the backpropagation (BP) and generalized-regression genetic-neural (GRGN) network were compared using a series of nonpeptide arginine vasopressin VI antagonists. It was shown that both approaches are equivalent with respect to the recognition process while the BP network is superior over GRGN if the sample sizes are lowered by cross-validation.</p>\",\"PeriodicalId\":11297,\"journal\":{\"name\":\"Drug design and discovery\",\"volume\":\"16 1\",\"pages\":\"49-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug design and discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug design and discovery","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用一系列非肽精氨酸抗利血激素VI拮抗剂,比较了反向传播(BP)和广义回归遗传神经网络(GRGN)的结果。结果表明,两种方法在识别过程中是等效的,而如果通过交叉验证降低样本量,BP网络优于GRGN网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of backpropagation and generalized-regression genetic-neural network models.

The results of the backpropagation (BP) and generalized-regression genetic-neural (GRGN) network were compared using a series of nonpeptide arginine vasopressin VI antagonists. It was shown that both approaches are equivalent with respect to the recognition process while the BP network is superior over GRGN if the sample sizes are lowered by cross-validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信