ATP合酶的生物物理研究

Yasuo Kagawa
{"title":"ATP合酶的生物物理研究","authors":"Yasuo Kagawa","doi":"10.1016/S0065-227X(99)80003-3","DOIUrl":null,"url":null,"abstract":"<div><p>The isolation of ATP synthase (F<sub>0</sub>F<sub>1</sub>) (<em>82</em>) and F<sub>0</sub> (<em>83</em>) 34 years ago finally revealed that F<sub>0</sub>F<sub>1</sub> is a motor composed of F<sub>0</sub> (ion-motor, abc subunits) and F<sub>1</sub> (ATP-motor, <em>α</em><sub>3</sub><em>β</em><sub>3</sub>γδε subunits) (Fig. 1). The single molecule videotape (<em>4, 5, 65, 66</em>) revealed that γε axis of F<sub>1</sub> rotates counterclockwise, proceeds by each <span><math><mtext>2π</mtext><mtext>3</mtext></math></span> step, and is driven by torque of 42 pN·nm (<em>12</em>) with nearly 100% efficiency (<em>5</em>) (Fig. 4). The motor is composed of a rotor (γε-F<sub>0</sub>-c) and a stator (<em>α</em><sub>3</sub><em>β</em><sub>3</sub>δ-F<sub>0</sub>-ab), and the rotor is connected to a shaft (γε). Since F<sub>0</sub>F<sub>1</sub> is driven by Δ<span><math><mtext>\\</mtext><mtext>̄</mtext></math></span>gmH<sup>+</sup> (<em>9, 10, 84</em>), biophysical studies on stable TF<sub>0</sub>F<sub>1</sub> (<em>1, 7</em>) are essential to elucidate the mechanism. These include nanomechanics (<em>4, 5</em>) (Fig. 4), crystallography (<em>2, 3</em>) (Figs. 2 and 3), NMR (<em>51, 52</em>), ESR (<em>56</em>), synchrotron analysis (<em>3, 28</em>), and electrophysiology (<em>10, 25</em>). The <em>K</em><sub>mATP</sub> value of rotation is 0.8 μ<span>m</span>, with the <em>V</em><sub>max</sub> of 3.9 rps (<em>5</em>). This corresponds to the bi-site catalysis in proton transport by F<sub>0</sub>F<sub>1</sub> (<em>10, 70, 84</em>). X-ray crystallography of MF<sub>1</sub> (<em>2</em>) and the <em>α</em><sub>3</sub><em>β</em><sub>3</sub> oligomer of TF<sub>1</sub> (<em>3</em>) (Fig. 2) together with mutation analyses revealed the role of residues in the rotation. The idea of elastic energy store is proposed in <em>α</em><sub>3</sub><em>β</em><sub>3</sub>γ during the stepping time (up to a few sec) after the ATP binding. Biological studies have partially clarified the genetic and kinetic regulation of the rotation in MF<sub>1</sub>. Both theories (<em>6, 7, 62, 64, 85</em>) and the biological significance (<em>17</em>) of the intramolecular rotation of F<sub>0</sub>F<sub>1</sub> await further studies, especially those of F<sub>0</sub> and minor subunits.</p></div>","PeriodicalId":50880,"journal":{"name":"Advances in Biophysics","volume":"36 ","pages":"Pages 1-25"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-227X(99)80003-3","citationCount":"14","resultStr":"{\"title\":\"Biophysical studies on ATP synthase\",\"authors\":\"Yasuo Kagawa\",\"doi\":\"10.1016/S0065-227X(99)80003-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The isolation of ATP synthase (F<sub>0</sub>F<sub>1</sub>) (<em>82</em>) and F<sub>0</sub> (<em>83</em>) 34 years ago finally revealed that F<sub>0</sub>F<sub>1</sub> is a motor composed of F<sub>0</sub> (ion-motor, abc subunits) and F<sub>1</sub> (ATP-motor, <em>α</em><sub>3</sub><em>β</em><sub>3</sub>γδε subunits) (Fig. 1). The single molecule videotape (<em>4, 5, 65, 66</em>) revealed that γε axis of F<sub>1</sub> rotates counterclockwise, proceeds by each <span><math><mtext>2π</mtext><mtext>3</mtext></math></span> step, and is driven by torque of 42 pN·nm (<em>12</em>) with nearly 100% efficiency (<em>5</em>) (Fig. 4). The motor is composed of a rotor (γε-F<sub>0</sub>-c) and a stator (<em>α</em><sub>3</sub><em>β</em><sub>3</sub>δ-F<sub>0</sub>-ab), and the rotor is connected to a shaft (γε). Since F<sub>0</sub>F<sub>1</sub> is driven by Δ<span><math><mtext>\\\\</mtext><mtext>̄</mtext></math></span>gmH<sup>+</sup> (<em>9, 10, 84</em>), biophysical studies on stable TF<sub>0</sub>F<sub>1</sub> (<em>1, 7</em>) are essential to elucidate the mechanism. These include nanomechanics (<em>4, 5</em>) (Fig. 4), crystallography (<em>2, 3</em>) (Figs. 2 and 3), NMR (<em>51, 52</em>), ESR (<em>56</em>), synchrotron analysis (<em>3, 28</em>), and electrophysiology (<em>10, 25</em>). The <em>K</em><sub>mATP</sub> value of rotation is 0.8 μ<span>m</span>, with the <em>V</em><sub>max</sub> of 3.9 rps (<em>5</em>). This corresponds to the bi-site catalysis in proton transport by F<sub>0</sub>F<sub>1</sub> (<em>10, 70, 84</em>). X-ray crystallography of MF<sub>1</sub> (<em>2</em>) and the <em>α</em><sub>3</sub><em>β</em><sub>3</sub> oligomer of TF<sub>1</sub> (<em>3</em>) (Fig. 2) together with mutation analyses revealed the role of residues in the rotation. The idea of elastic energy store is proposed in <em>α</em><sub>3</sub><em>β</em><sub>3</sub>γ during the stepping time (up to a few sec) after the ATP binding. Biological studies have partially clarified the genetic and kinetic regulation of the rotation in MF<sub>1</sub>. Both theories (<em>6, 7, 62, 64, 85</em>) and the biological significance (<em>17</em>) of the intramolecular rotation of F<sub>0</sub>F<sub>1</sub> await further studies, especially those of F<sub>0</sub> and minor subunits.</p></div>\",\"PeriodicalId\":50880,\"journal\":{\"name\":\"Advances in Biophysics\",\"volume\":\"36 \",\"pages\":\"Pages 1-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0065-227X(99)80003-3\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065227X99800033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065227X99800033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

隔离的ATP合酶(F0F1)(82)和F0 34年前(83年)最后透露,F0F1是电动机组成的F0 (ion-motor, abc子单元)和F1 (ATP-motor,α3βγδε子单元)(图1)。单分子录像带(4、5、65、66)透露,γεF1轴逆时针旋转,收益由每个2π3步骤,和驱动转矩的42 pN·nm(12)有近100%的效率(5)(图4)。电机由一个转子(γε-F0-c)和定子(α3β3δ-F0-ab),转子与轴(γε)相连。由于F0F1是由Δ\ \ gmH+(9,10,84)驱动的,因此对稳定的TF0F1(1,7)进行生物物理研究对于阐明其机制至关重要。这些包括纳米力学(4,5)(图4)、晶体学(2,3)(图2和3)、核磁共振(51,52)、ESR(56)、同步加速器分析(3,28)和电生理学(10,25)。旋转的KmATP值为0.8 μm, Vmax为3.9 rps(5),这对应于F0F1在质子输运中的双位点催化作用(10,70,84)。MF1(2)和TF1(3)的α3β3低聚物的x射线晶体学(图2)以及突变分析揭示了残基在旋转中的作用。在ATP结合后的步进时间(长达几秒)内,α3β3γ存在弹性能量储存的想法。生物学研究已经部分阐明了MF1旋转的遗传和动力学调控。F0F1分子内旋转的理论(6、7、62、64、85)和生物学意义(17)有待进一步研究,特别是F0及其小亚基的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biophysical studies on ATP synthase

The isolation of ATP synthase (F0F1) (82) and F0 (83) 34 years ago finally revealed that F0F1 is a motor composed of F0 (ion-motor, abc subunits) and F1 (ATP-motor, α3β3γδε subunits) (Fig. 1). The single molecule videotape (4, 5, 65, 66) revealed that γε axis of F1 rotates counterclockwise, proceeds by each 3 step, and is driven by torque of 42 pN·nm (12) with nearly 100% efficiency (5) (Fig. 4). The motor is composed of a rotor (γε-F0-c) and a stator (α3β3δ-F0-ab), and the rotor is connected to a shaft (γε). Since F0F1 is driven by Δ\̄gmH+ (9, 10, 84), biophysical studies on stable TF0F1 (1, 7) are essential to elucidate the mechanism. These include nanomechanics (4, 5) (Fig. 4), crystallography (2, 3) (Figs. 2 and 3), NMR (51, 52), ESR (56), synchrotron analysis (3, 28), and electrophysiology (10, 25). The KmATP value of rotation is 0.8 μm, with the Vmax of 3.9 rps (5). This corresponds to the bi-site catalysis in proton transport by F0F1 (10, 70, 84). X-ray crystallography of MF1 (2) and the α3β3 oligomer of TF1 (3) (Fig. 2) together with mutation analyses revealed the role of residues in the rotation. The idea of elastic energy store is proposed in α3β3γ during the stepping time (up to a few sec) after the ATP binding. Biological studies have partially clarified the genetic and kinetic regulation of the rotation in MF1. Both theories (6, 7, 62, 64, 85) and the biological significance (17) of the intramolecular rotation of F0F1 await further studies, especially those of F0 and minor subunits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信