{"title":"ATP合酶的生物物理研究","authors":"Yasuo Kagawa","doi":"10.1016/S0065-227X(99)80003-3","DOIUrl":null,"url":null,"abstract":"<div><p>The isolation of ATP synthase (F<sub>0</sub>F<sub>1</sub>) (<em>82</em>) and F<sub>0</sub> (<em>83</em>) 34 years ago finally revealed that F<sub>0</sub>F<sub>1</sub> is a motor composed of F<sub>0</sub> (ion-motor, abc subunits) and F<sub>1</sub> (ATP-motor, <em>α</em><sub>3</sub><em>β</em><sub>3</sub>γδε subunits) (Fig. 1). The single molecule videotape (<em>4, 5, 65, 66</em>) revealed that γε axis of F<sub>1</sub> rotates counterclockwise, proceeds by each <span><math><mtext>2π</mtext><mtext>3</mtext></math></span> step, and is driven by torque of 42 pN·nm (<em>12</em>) with nearly 100% efficiency (<em>5</em>) (Fig. 4). The motor is composed of a rotor (γε-F<sub>0</sub>-c) and a stator (<em>α</em><sub>3</sub><em>β</em><sub>3</sub>δ-F<sub>0</sub>-ab), and the rotor is connected to a shaft (γε). Since F<sub>0</sub>F<sub>1</sub> is driven by Δ<span><math><mtext>\\</mtext><mtext>̄</mtext></math></span>gmH<sup>+</sup> (<em>9, 10, 84</em>), biophysical studies on stable TF<sub>0</sub>F<sub>1</sub> (<em>1, 7</em>) are essential to elucidate the mechanism. These include nanomechanics (<em>4, 5</em>) (Fig. 4), crystallography (<em>2, 3</em>) (Figs. 2 and 3), NMR (<em>51, 52</em>), ESR (<em>56</em>), synchrotron analysis (<em>3, 28</em>), and electrophysiology (<em>10, 25</em>). The <em>K</em><sub>mATP</sub> value of rotation is 0.8 μ<span>m</span>, with the <em>V</em><sub>max</sub> of 3.9 rps (<em>5</em>). This corresponds to the bi-site catalysis in proton transport by F<sub>0</sub>F<sub>1</sub> (<em>10, 70, 84</em>). X-ray crystallography of MF<sub>1</sub> (<em>2</em>) and the <em>α</em><sub>3</sub><em>β</em><sub>3</sub> oligomer of TF<sub>1</sub> (<em>3</em>) (Fig. 2) together with mutation analyses revealed the role of residues in the rotation. The idea of elastic energy store is proposed in <em>α</em><sub>3</sub><em>β</em><sub>3</sub>γ during the stepping time (up to a few sec) after the ATP binding. Biological studies have partially clarified the genetic and kinetic regulation of the rotation in MF<sub>1</sub>. Both theories (<em>6, 7, 62, 64, 85</em>) and the biological significance (<em>17</em>) of the intramolecular rotation of F<sub>0</sub>F<sub>1</sub> await further studies, especially those of F<sub>0</sub> and minor subunits.</p></div>","PeriodicalId":50880,"journal":{"name":"Advances in Biophysics","volume":"36 ","pages":"Pages 1-25"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-227X(99)80003-3","citationCount":"14","resultStr":"{\"title\":\"Biophysical studies on ATP synthase\",\"authors\":\"Yasuo Kagawa\",\"doi\":\"10.1016/S0065-227X(99)80003-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The isolation of ATP synthase (F<sub>0</sub>F<sub>1</sub>) (<em>82</em>) and F<sub>0</sub> (<em>83</em>) 34 years ago finally revealed that F<sub>0</sub>F<sub>1</sub> is a motor composed of F<sub>0</sub> (ion-motor, abc subunits) and F<sub>1</sub> (ATP-motor, <em>α</em><sub>3</sub><em>β</em><sub>3</sub>γδε subunits) (Fig. 1). The single molecule videotape (<em>4, 5, 65, 66</em>) revealed that γε axis of F<sub>1</sub> rotates counterclockwise, proceeds by each <span><math><mtext>2π</mtext><mtext>3</mtext></math></span> step, and is driven by torque of 42 pN·nm (<em>12</em>) with nearly 100% efficiency (<em>5</em>) (Fig. 4). The motor is composed of a rotor (γε-F<sub>0</sub>-c) and a stator (<em>α</em><sub>3</sub><em>β</em><sub>3</sub>δ-F<sub>0</sub>-ab), and the rotor is connected to a shaft (γε). Since F<sub>0</sub>F<sub>1</sub> is driven by Δ<span><math><mtext>\\\\</mtext><mtext>̄</mtext></math></span>gmH<sup>+</sup> (<em>9, 10, 84</em>), biophysical studies on stable TF<sub>0</sub>F<sub>1</sub> (<em>1, 7</em>) are essential to elucidate the mechanism. These include nanomechanics (<em>4, 5</em>) (Fig. 4), crystallography (<em>2, 3</em>) (Figs. 2 and 3), NMR (<em>51, 52</em>), ESR (<em>56</em>), synchrotron analysis (<em>3, 28</em>), and electrophysiology (<em>10, 25</em>). The <em>K</em><sub>mATP</sub> value of rotation is 0.8 μ<span>m</span>, with the <em>V</em><sub>max</sub> of 3.9 rps (<em>5</em>). This corresponds to the bi-site catalysis in proton transport by F<sub>0</sub>F<sub>1</sub> (<em>10, 70, 84</em>). X-ray crystallography of MF<sub>1</sub> (<em>2</em>) and the <em>α</em><sub>3</sub><em>β</em><sub>3</sub> oligomer of TF<sub>1</sub> (<em>3</em>) (Fig. 2) together with mutation analyses revealed the role of residues in the rotation. The idea of elastic energy store is proposed in <em>α</em><sub>3</sub><em>β</em><sub>3</sub>γ during the stepping time (up to a few sec) after the ATP binding. Biological studies have partially clarified the genetic and kinetic regulation of the rotation in MF<sub>1</sub>. Both theories (<em>6, 7, 62, 64, 85</em>) and the biological significance (<em>17</em>) of the intramolecular rotation of F<sub>0</sub>F<sub>1</sub> await further studies, especially those of F<sub>0</sub> and minor subunits.</p></div>\",\"PeriodicalId\":50880,\"journal\":{\"name\":\"Advances in Biophysics\",\"volume\":\"36 \",\"pages\":\"Pages 1-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0065-227X(99)80003-3\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065227X99800033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065227X99800033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The isolation of ATP synthase (F0F1) (82) and F0 (83) 34 years ago finally revealed that F0F1 is a motor composed of F0 (ion-motor, abc subunits) and F1 (ATP-motor, α3β3γδε subunits) (Fig. 1). The single molecule videotape (4, 5, 65, 66) revealed that γε axis of F1 rotates counterclockwise, proceeds by each step, and is driven by torque of 42 pN·nm (12) with nearly 100% efficiency (5) (Fig. 4). The motor is composed of a rotor (γε-F0-c) and a stator (α3β3δ-F0-ab), and the rotor is connected to a shaft (γε). Since F0F1 is driven by ΔgmH+ (9, 10, 84), biophysical studies on stable TF0F1 (1, 7) are essential to elucidate the mechanism. These include nanomechanics (4, 5) (Fig. 4), crystallography (2, 3) (Figs. 2 and 3), NMR (51, 52), ESR (56), synchrotron analysis (3, 28), and electrophysiology (10, 25). The KmATP value of rotation is 0.8 μm, with the Vmax of 3.9 rps (5). This corresponds to the bi-site catalysis in proton transport by F0F1 (10, 70, 84). X-ray crystallography of MF1 (2) and the α3β3 oligomer of TF1 (3) (Fig. 2) together with mutation analyses revealed the role of residues in the rotation. The idea of elastic energy store is proposed in α3β3γ during the stepping time (up to a few sec) after the ATP binding. Biological studies have partially clarified the genetic and kinetic regulation of the rotation in MF1. Both theories (6, 7, 62, 64, 85) and the biological significance (17) of the intramolecular rotation of F0F1 await further studies, especially those of F0 and minor subunits.