{"title":"芽孢杆菌科rrs和nifH基因的系统发育比较。","authors":"W Achouak, P Normand, T Heulin","doi":"10.1099/00207713-49-3-961","DOIUrl":null,"url":null,"abstract":"<p><p>The rrs (16S rDNA) gene sequences of nitrogen-fixing endospore-forming bacilli isolated from the rhizosphere of wheat and maize were determined in order to infer their phylogenetic position in the Bacillaceae. These rhizosphere strains form a monophyletic cluster with Paenibacillus azotofixans, Paenibacillus polymyxa and Paenibacillus macerans. Two of them (RSA19 and TOD45) had previously been identified as Bacillus circulans (group 2) by phenotypic characterization (API 50CH). Evidence for nitrogen fixation by P. azotofixans, P. polymyxa, P. macerans and putative B. circulans strains RSA19 and TOD45 was provided by acetylene-reduction activity, and confirmed by amplifying and sequencing a nifH fragment (370 nt). The phylogenetic tree of nifH-derived amino acid sequences was compared to the phylogenetic tree of rrs sequences. All Paenibacillus nifH sequences formed a coherent cluster distinct from that of related nitrogen-fixing anaerobic clostridia and Gram-positive high-G+C-content frankiae. The nifH gene was neither detected in the B. circulans type strain (ATCC 4513T) nor in the type strains of Bacillus subtilis, Bacillus cereus, Bacillus alcalophilus, Bacillus simplex, Brevibacillus brevis and Paenibacillus validus. Accordingly, nitrogen fixation among aerobic endospore-forming Firmicutes seems to be restricted to a subset of species in the genus Paenibacillus.</p>","PeriodicalId":14428,"journal":{"name":"International journal of systematic bacteriology","volume":"49 Pt 3 ","pages":"961-7"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1099/00207713-49-3-961","citationCount":"82","resultStr":"{\"title\":\"Comparative phylogeny of rrs and nifH genes in the Bacillaceae.\",\"authors\":\"W Achouak, P Normand, T Heulin\",\"doi\":\"10.1099/00207713-49-3-961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rrs (16S rDNA) gene sequences of nitrogen-fixing endospore-forming bacilli isolated from the rhizosphere of wheat and maize were determined in order to infer their phylogenetic position in the Bacillaceae. These rhizosphere strains form a monophyletic cluster with Paenibacillus azotofixans, Paenibacillus polymyxa and Paenibacillus macerans. Two of them (RSA19 and TOD45) had previously been identified as Bacillus circulans (group 2) by phenotypic characterization (API 50CH). Evidence for nitrogen fixation by P. azotofixans, P. polymyxa, P. macerans and putative B. circulans strains RSA19 and TOD45 was provided by acetylene-reduction activity, and confirmed by amplifying and sequencing a nifH fragment (370 nt). The phylogenetic tree of nifH-derived amino acid sequences was compared to the phylogenetic tree of rrs sequences. All Paenibacillus nifH sequences formed a coherent cluster distinct from that of related nitrogen-fixing anaerobic clostridia and Gram-positive high-G+C-content frankiae. The nifH gene was neither detected in the B. circulans type strain (ATCC 4513T) nor in the type strains of Bacillus subtilis, Bacillus cereus, Bacillus alcalophilus, Bacillus simplex, Brevibacillus brevis and Paenibacillus validus. Accordingly, nitrogen fixation among aerobic endospore-forming Firmicutes seems to be restricted to a subset of species in the genus Paenibacillus.</p>\",\"PeriodicalId\":14428,\"journal\":{\"name\":\"International journal of systematic bacteriology\",\"volume\":\"49 Pt 3 \",\"pages\":\"961-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1099/00207713-49-3-961\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of systematic bacteriology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1099/00207713-49-3-961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of systematic bacteriology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1099/00207713-49-3-961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative phylogeny of rrs and nifH genes in the Bacillaceae.
The rrs (16S rDNA) gene sequences of nitrogen-fixing endospore-forming bacilli isolated from the rhizosphere of wheat and maize were determined in order to infer their phylogenetic position in the Bacillaceae. These rhizosphere strains form a monophyletic cluster with Paenibacillus azotofixans, Paenibacillus polymyxa and Paenibacillus macerans. Two of them (RSA19 and TOD45) had previously been identified as Bacillus circulans (group 2) by phenotypic characterization (API 50CH). Evidence for nitrogen fixation by P. azotofixans, P. polymyxa, P. macerans and putative B. circulans strains RSA19 and TOD45 was provided by acetylene-reduction activity, and confirmed by amplifying and sequencing a nifH fragment (370 nt). The phylogenetic tree of nifH-derived amino acid sequences was compared to the phylogenetic tree of rrs sequences. All Paenibacillus nifH sequences formed a coherent cluster distinct from that of related nitrogen-fixing anaerobic clostridia and Gram-positive high-G+C-content frankiae. The nifH gene was neither detected in the B. circulans type strain (ATCC 4513T) nor in the type strains of Bacillus subtilis, Bacillus cereus, Bacillus alcalophilus, Bacillus simplex, Brevibacillus brevis and Paenibacillus validus. Accordingly, nitrogen fixation among aerobic endospore-forming Firmicutes seems to be restricted to a subset of species in the genus Paenibacillus.