Wu-Austin hamilton量没有有限基态的基本论证(寻找Fröhlichs理论的微观基础)

H. Bolterauer
{"title":"Wu-Austin hamilton量没有有限基态的基本论证(寻找Fröhlichs理论的微观基础)","authors":"H. Bolterauer","doi":"10.1016/S0302-4598(99)00030-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Wu–Austin Hamiltonian as the basis for deriving Fröhlichs rate equations from a microscopical point of view has been investigated. In addition to an earlier paper we show in a very easy manner that this or similar Hamiltonians have no lower bound and are therefore unphysical. The perturbation expansion which is the tool to derive Fröhlichs rate equations with this Hamiltonian is not converging. Therefore, the usual derivation of this rate equation is not valid.</p></div>","PeriodicalId":79804,"journal":{"name":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","volume":"48 2","pages":"Pages 301-304"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00030-6","citationCount":"12","resultStr":"{\"title\":\"Elementary arguments that the Wu–Austin Hamiltonian has no finite ground state (the search for a microscopic foundation of Fröhlichs theory)\",\"authors\":\"H. Bolterauer\",\"doi\":\"10.1016/S0302-4598(99)00030-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Wu–Austin Hamiltonian as the basis for deriving Fröhlichs rate equations from a microscopical point of view has been investigated. In addition to an earlier paper we show in a very easy manner that this or similar Hamiltonians have no lower bound and are therefore unphysical. The perturbation expansion which is the tool to derive Fröhlichs rate equations with this Hamiltonian is not converging. Therefore, the usual derivation of this rate equation is not valid.</p></div>\",\"PeriodicalId\":79804,\"journal\":{\"name\":\"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)\",\"volume\":\"48 2\",\"pages\":\"Pages 301-304\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00030-6\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0302459899000306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0302459899000306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究了从微观角度推导Fröhlichs速率方程的Wu-Austin hamilton量。除了之前的一篇论文外,我们用一种很简单的方式证明了这个或类似的哈密顿量没有下界,因此是非物理的。微扰展开是推导Fröhlichs速率方程的工具用这个哈密顿量是不收敛的。因此,通常对这个速率方程的推导是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elementary arguments that the Wu–Austin Hamiltonian has no finite ground state (the search for a microscopic foundation of Fröhlichs theory)

The Wu–Austin Hamiltonian as the basis for deriving Fröhlichs rate equations from a microscopical point of view has been investigated. In addition to an earlier paper we show in a very easy manner that this or similar Hamiltonians have no lower bound and are therefore unphysical. The perturbation expansion which is the tool to derive Fröhlichs rate equations with this Hamiltonian is not converging. Therefore, the usual derivation of this rate equation is not valid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信