{"title":"细胞微管中的量子力学相干性:现实的可能性?","authors":"N.E. Mavromatos","doi":"10.1016/S0302-4598(99)00015-X","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss the possibility of quantum-mechanical coherence in Cell MicroTubules (MT), based on recent developments in quantum physics. We focus on potential mechanisms for `energy-loss-free' transport along the microtubules, which could be considered as realizations of Fröhlich's ideas on the role of solitons for superconductivity and/or biological matter. In particular, by representing the MT arrangements as <em>cavities</em>, we review a novel scenario, suggested in collaboration with D.V. Nanopoulos, concerning the formation of macroscopic (or mesoscopic) quantum-coherent states, as a result of the (quantum-electromagnetic) interactions of the MT dimers with the surrounding molecules of the ordered water in the interior of the MT cylinders. We suggest specific experiments to test the above-conjectured quantum nature of the microtubular arrangements inside the cell. These experiments are similar in nature to those in atomic physics, used in the detection of the Rabi-Vacuum coupling between coherent cavity modes and atoms. Our conjecture is that a similar Rabi-Vacuum-splitting phenomenon occurs in the absorption (or emission) spectra of the MT dimers, which would constitute a manifestation of the dimer coupling with the coherent modes in the ordered-water environment (dipole quanta), which emerge due to the phenomenon of `super-radiance'.</p></div>","PeriodicalId":79804,"journal":{"name":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","volume":"48 2","pages":"Pages 273-284"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00015-X","citationCount":"17","resultStr":"{\"title\":\"Quantum-mechanical coherence in cell microtubules: a realistic possibility?\",\"authors\":\"N.E. Mavromatos\",\"doi\":\"10.1016/S0302-4598(99)00015-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss the possibility of quantum-mechanical coherence in Cell MicroTubules (MT), based on recent developments in quantum physics. We focus on potential mechanisms for `energy-loss-free' transport along the microtubules, which could be considered as realizations of Fröhlich's ideas on the role of solitons for superconductivity and/or biological matter. In particular, by representing the MT arrangements as <em>cavities</em>, we review a novel scenario, suggested in collaboration with D.V. Nanopoulos, concerning the formation of macroscopic (or mesoscopic) quantum-coherent states, as a result of the (quantum-electromagnetic) interactions of the MT dimers with the surrounding molecules of the ordered water in the interior of the MT cylinders. We suggest specific experiments to test the above-conjectured quantum nature of the microtubular arrangements inside the cell. These experiments are similar in nature to those in atomic physics, used in the detection of the Rabi-Vacuum coupling between coherent cavity modes and atoms. Our conjecture is that a similar Rabi-Vacuum-splitting phenomenon occurs in the absorption (or emission) spectra of the MT dimers, which would constitute a manifestation of the dimer coupling with the coherent modes in the ordered-water environment (dipole quanta), which emerge due to the phenomenon of `super-radiance'.</p></div>\",\"PeriodicalId\":79804,\"journal\":{\"name\":\"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)\",\"volume\":\"48 2\",\"pages\":\"Pages 273-284\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00015-X\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030245989900015X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030245989900015X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum-mechanical coherence in cell microtubules: a realistic possibility?
We discuss the possibility of quantum-mechanical coherence in Cell MicroTubules (MT), based on recent developments in quantum physics. We focus on potential mechanisms for `energy-loss-free' transport along the microtubules, which could be considered as realizations of Fröhlich's ideas on the role of solitons for superconductivity and/or biological matter. In particular, by representing the MT arrangements as cavities, we review a novel scenario, suggested in collaboration with D.V. Nanopoulos, concerning the formation of macroscopic (or mesoscopic) quantum-coherent states, as a result of the (quantum-electromagnetic) interactions of the MT dimers with the surrounding molecules of the ordered water in the interior of the MT cylinders. We suggest specific experiments to test the above-conjectured quantum nature of the microtubular arrangements inside the cell. These experiments are similar in nature to those in atomic physics, used in the detection of the Rabi-Vacuum coupling between coherent cavity modes and atoms. Our conjecture is that a similar Rabi-Vacuum-splitting phenomenon occurs in the absorption (or emission) spectra of the MT dimers, which would constitute a manifestation of the dimer coupling with the coherent modes in the ordered-water environment (dipole quanta), which emerge due to the phenomenon of `super-radiance'.