量子耗散和神经网络动力学

Eliano Pessa , Giuseppe Vitiello
{"title":"量子耗散和神经网络动力学","authors":"Eliano Pessa ,&nbsp;Giuseppe Vitiello","doi":"10.1016/S0302-4598(99)00036-7","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by the dissipative quantum model of brain, we model the states of neural nets in terms of collective modes by the help of the formalism of Quantum Field Theory. We exhibit an explicit neural net model which allows to memorize a sequence of several informations without reciprocal destructive interference, namely we solve the overprinting problem in such a way last registered information does not destroy the ones previously registered. Moreover, the net is able to recall not only the last registered information in the sequence, but also anyone of those previously registered.</p></div>","PeriodicalId":79804,"journal":{"name":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","volume":"48 2","pages":"Pages 339-342"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00036-7","citationCount":"24","resultStr":"{\"title\":\"Quantum dissipation and Neural Net Dynamics\",\"authors\":\"Eliano Pessa ,&nbsp;Giuseppe Vitiello\",\"doi\":\"10.1016/S0302-4598(99)00036-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspired by the dissipative quantum model of brain, we model the states of neural nets in terms of collective modes by the help of the formalism of Quantum Field Theory. We exhibit an explicit neural net model which allows to memorize a sequence of several informations without reciprocal destructive interference, namely we solve the overprinting problem in such a way last registered information does not destroy the ones previously registered. Moreover, the net is able to recall not only the last registered information in the sequence, but also anyone of those previously registered.</p></div>\",\"PeriodicalId\":79804,\"journal\":{\"name\":\"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)\",\"volume\":\"48 2\",\"pages\":\"Pages 339-342\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00036-7\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0302459899000367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0302459899000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

受大脑耗散量子模型的启发,我们借助量子场论的形式主义,用集体模式对神经网络的状态进行建模。我们展示了一个显式神经网络模型,该模型允许在没有相互破坏性干扰的情况下记忆一系列信息,即我们以这样一种方式解决套印问题,即最后注册的信息不会破坏先前注册的信息。此外,该网络不仅能够回忆起序列中最后注册的信息,还能够回忆起之前注册的任何信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum dissipation and Neural Net Dynamics

Inspired by the dissipative quantum model of brain, we model the states of neural nets in terms of collective modes by the help of the formalism of Quantum Field Theory. We exhibit an explicit neural net model which allows to memorize a sequence of several informations without reciprocal destructive interference, namely we solve the overprinting problem in such a way last registered information does not destroy the ones previously registered. Moreover, the net is able to recall not only the last registered information in the sequence, but also anyone of those previously registered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信