{"title":"周期场对生物系统中远距离电子转移的影响","authors":"Elmar G. Petrov","doi":"10.1016/S0302-4598(99)00035-5","DOIUrl":null,"url":null,"abstract":"<div><p>Generalization of the Marcus transfer rate is derived for the case of a dissipative long-range donor–acceptor electron transfer (ET) mediated by specific bridging electron pathways in biological systems and driven by ac-electric field. High-frequency electric field is shown to block and even to invert the transfer if a specific relation between amplitude and frequency of the ac-field is fulfilled.</p></div>","PeriodicalId":79804,"journal":{"name":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","volume":"48 2","pages":"Pages 333-337"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00035-5","citationCount":"2","resultStr":"{\"title\":\"Influence of a periodic field on the distant electron transfer in biological systems\",\"authors\":\"Elmar G. Petrov\",\"doi\":\"10.1016/S0302-4598(99)00035-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generalization of the Marcus transfer rate is derived for the case of a dissipative long-range donor–acceptor electron transfer (ET) mediated by specific bridging electron pathways in biological systems and driven by ac-electric field. High-frequency electric field is shown to block and even to invert the transfer if a specific relation between amplitude and frequency of the ac-field is fulfilled.</p></div>\",\"PeriodicalId\":79804,\"journal\":{\"name\":\"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)\",\"volume\":\"48 2\",\"pages\":\"Pages 333-337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00035-5\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0302459899000355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0302459899000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of a periodic field on the distant electron transfer in biological systems
Generalization of the Marcus transfer rate is derived for the case of a dissipative long-range donor–acceptor electron transfer (ET) mediated by specific bridging electron pathways in biological systems and driven by ac-electric field. High-frequency electric field is shown to block and even to invert the transfer if a specific relation between amplitude and frequency of the ac-field is fulfilled.