{"title":"利用石英晶体微天平实时监测核酸酶裂解","authors":"Joseph Wang , Mian Jiang , Emil Palecek","doi":"10.1016/S0302-4598(99)00003-3","DOIUrl":null,"url":null,"abstract":"<div><p>The use of quartz crystal microbalance (QCM) for monitoring in situ the enzymatic cleavage of surface-confined nucleic acids by nucleases is described. Such real-time monitoring of mass changes associated with the enzymatic digestion indicates that the activity and specificity of nucleases is preserved at the gold surface, and can be used for manipulating surface-confined DNAs and RNAs. These observations indicate great promise for using QCM for elucidating the interactions of nucleic acids with enzymes, and for enhancing the power of hybridization biosensors.</p></div>","PeriodicalId":79804,"journal":{"name":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","volume":"48 2","pages":"Pages 477-480"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00003-3","citationCount":"45","resultStr":"{\"title\":\"Real-time monitoring of enzymatic cleavage of nucleic acids using a quartz crystal microbalance\",\"authors\":\"Joseph Wang , Mian Jiang , Emil Palecek\",\"doi\":\"10.1016/S0302-4598(99)00003-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of quartz crystal microbalance (QCM) for monitoring in situ the enzymatic cleavage of surface-confined nucleic acids by nucleases is described. Such real-time monitoring of mass changes associated with the enzymatic digestion indicates that the activity and specificity of nucleases is preserved at the gold surface, and can be used for manipulating surface-confined DNAs and RNAs. These observations indicate great promise for using QCM for elucidating the interactions of nucleic acids with enzymes, and for enhancing the power of hybridization biosensors.</p></div>\",\"PeriodicalId\":79804,\"journal\":{\"name\":\"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)\",\"volume\":\"48 2\",\"pages\":\"Pages 477-480\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00003-3\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0302459899000033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0302459899000033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time monitoring of enzymatic cleavage of nucleic acids using a quartz crystal microbalance
The use of quartz crystal microbalance (QCM) for monitoring in situ the enzymatic cleavage of surface-confined nucleic acids by nucleases is described. Such real-time monitoring of mass changes associated with the enzymatic digestion indicates that the activity and specificity of nucleases is preserved at the gold surface, and can be used for manipulating surface-confined DNAs and RNAs. These observations indicate great promise for using QCM for elucidating the interactions of nucleic acids with enzymes, and for enhancing the power of hybridization biosensors.