未占据表面态的自旋轨道相互作用

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Ryuichi Arafune , Noriaki Takagi , Hiroshi Ishida
{"title":"未占据表面态的自旋轨道相互作用","authors":"Ryuichi Arafune ,&nbsp;Noriaki Takagi ,&nbsp;Hiroshi Ishida","doi":"10.1016/j.progsurf.2018.08.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Spin-orbit interaction (SOI) has been investigated extensively in the last decade, for its potential impact on spintronics, which has become particularly important in surface science. This article reviews our recent works on SOI in the </span>image potential states<span> (IPSs), which have been widely studied as an ideal model system for electron dynamics at solid surfaces. By combining high-energy resolution bichromatic two-photon </span></span>photoemission<span> spectroscopy and circular dichroism (CD), we have investigated the Rashba-type SOI of IPSs. We measured the splitting of n = 1 IPS on Au(1 0 0) surface and determined its Rashba parameter. We also discuss the splitting of IPS on a graphene-covered Ir(1 1 1) surface presented recently based on selection rules for CD measurements and the calculated band structure.</span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"93 4","pages":"Pages 177-188"},"PeriodicalIF":8.7000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2018.08.001","citationCount":"4","resultStr":"{\"title\":\"Spin-orbit interaction in unoccupied surface states\",\"authors\":\"Ryuichi Arafune ,&nbsp;Noriaki Takagi ,&nbsp;Hiroshi Ishida\",\"doi\":\"10.1016/j.progsurf.2018.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Spin-orbit interaction (SOI) has been investigated extensively in the last decade, for its potential impact on spintronics, which has become particularly important in surface science. This article reviews our recent works on SOI in the </span>image potential states<span> (IPSs), which have been widely studied as an ideal model system for electron dynamics at solid surfaces. By combining high-energy resolution bichromatic two-photon </span></span>photoemission<span> spectroscopy and circular dichroism (CD), we have investigated the Rashba-type SOI of IPSs. We measured the splitting of n = 1 IPS on Au(1 0 0) surface and determined its Rashba parameter. We also discuss the splitting of IPS on a graphene-covered Ir(1 1 1) surface presented recently based on selection rules for CD measurements and the calculated band structure.</span></p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"93 4\",\"pages\":\"Pages 177-188\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2018.08.001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681618300212\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681618300212","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

摘要

自旋轨道相互作用(SOI)由于其对自旋电子学的潜在影响,在过去十年中得到了广泛的研究,自旋电子学在表面科学中变得尤为重要。作为固体表面电子动力学的理想模型系统,图像势态(IPSs)中的SOI被广泛研究,本文综述了我们最近的研究工作。结合高能分辨双色双光子光发射光谱和圆二色(CD)技术,我们研究了ips的rashba型SOI。我们测量了n = 1 IPS在Au(1 0 0)表面的分裂,并确定了其Rashba参数。我们还根据CD测量的选择规则和计算的能带结构,讨论了最近提出的石墨烯覆盖Ir(1 1 1)表面上IPS的分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin-orbit interaction in unoccupied surface states

Spin-orbit interaction (SOI) has been investigated extensively in the last decade, for its potential impact on spintronics, which has become particularly important in surface science. This article reviews our recent works on SOI in the image potential states (IPSs), which have been widely studied as an ideal model system for electron dynamics at solid surfaces. By combining high-energy resolution bichromatic two-photon photoemission spectroscopy and circular dichroism (CD), we have investigated the Rashba-type SOI of IPSs. We measured the splitting of n = 1 IPS on Au(1 0 0) surface and determined its Rashba parameter. We also discuss the splitting of IPS on a graphene-covered Ir(1 1 1) surface presented recently based on selection rules for CD measurements and the calculated band structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信