金刚石表面转移掺杂研究进展

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Kevin G. Crawford , Isha Maini , David A. Macdonald, David A.J. Moran
{"title":"金刚石表面转移掺杂研究进展","authors":"Kevin G. Crawford ,&nbsp;Isha Maini ,&nbsp;David A. Macdonald,&nbsp;David A.J. Moran","doi":"10.1016/j.progsurf.2021.100613","DOIUrl":null,"url":null,"abstract":"<div><p>Ultra-wide bandgap materials show great promise as a solution to some of the limitations of current state of the art semiconductor technology. Among these, diamond has exhibited great potential for use in high-power, high-temperature electronics, as well as sensing and quantum applications. Yet, significant challenges associated with impurity doping of the constrained diamond lattice remain a primary impediment towards the development of diamond-based electronic devices. An alternative approach, used with continued success to unlock the use of diamond for semiconductor applications, has been that of ‘surface transfer doping’ - a process by which intrinsically insulating diamond surfaces can be made semiconducting without the need for traditional impurity doping. Here, we present a review of progress in surface transfer doping of diamond, both a history and current outlook of this highly exploitable attribute.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"96 1","pages":"Article 100613"},"PeriodicalIF":8.7000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2021.100613","citationCount":"56","resultStr":"{\"title\":\"Surface transfer doping of diamond: A review\",\"authors\":\"Kevin G. Crawford ,&nbsp;Isha Maini ,&nbsp;David A. Macdonald,&nbsp;David A.J. Moran\",\"doi\":\"10.1016/j.progsurf.2021.100613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultra-wide bandgap materials show great promise as a solution to some of the limitations of current state of the art semiconductor technology. Among these, diamond has exhibited great potential for use in high-power, high-temperature electronics, as well as sensing and quantum applications. Yet, significant challenges associated with impurity doping of the constrained diamond lattice remain a primary impediment towards the development of diamond-based electronic devices. An alternative approach, used with continued success to unlock the use of diamond for semiconductor applications, has been that of ‘surface transfer doping’ - a process by which intrinsically insulating diamond surfaces can be made semiconducting without the need for traditional impurity doping. Here, we present a review of progress in surface transfer doping of diamond, both a history and current outlook of this highly exploitable attribute.</p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"96 1\",\"pages\":\"Article 100613\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2021.100613\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681621000010\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681621000010","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 56

摘要

超宽带隙材料作为解决当前最先进半导体技术的一些局限性的一种解决方案,显示出巨大的希望。其中,金刚石在高功率、高温电子、传感和量子应用方面表现出了巨大的潜力。然而,与受限金刚石晶格的杂质掺杂相关的重大挑战仍然是金刚石基电子器件发展的主要障碍。另一种方法是“表面转移掺杂”,这种方法在半导体应用中不断取得成功,通过这种方法,内在绝缘的金刚石表面可以制成半导体,而不需要传统的杂质掺杂。本文对金刚石表面转移掺杂的研究进展进行了综述,并对其发展历史和前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface transfer doping of diamond: A review

Ultra-wide bandgap materials show great promise as a solution to some of the limitations of current state of the art semiconductor technology. Among these, diamond has exhibited great potential for use in high-power, high-temperature electronics, as well as sensing and quantum applications. Yet, significant challenges associated with impurity doping of the constrained diamond lattice remain a primary impediment towards the development of diamond-based electronic devices. An alternative approach, used with continued success to unlock the use of diamond for semiconductor applications, has been that of ‘surface transfer doping’ - a process by which intrinsically insulating diamond surfaces can be made semiconducting without the need for traditional impurity doping. Here, we present a review of progress in surface transfer doping of diamond, both a history and current outlook of this highly exploitable attribute.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信