Hong Ying Mao , Yun Hao Lu , Jia Dan Lin , Shu Zhong , Andrew Thye Shen Wee , Wei Chen
{"title":"通过分子功能化来操纵石墨烯的电子和化学性质","authors":"Hong Ying Mao , Yun Hao Lu , Jia Dan Lin , Shu Zhong , Andrew Thye Shen Wee , Wei Chen","doi":"10.1016/j.progsurf.2013.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene, a single atomic layer of sp<sup>2</sup><span><span>-hybridized carbon atoms arranged in a hexagonal structure and the Nobel winning material in 2010, has attracted extensive research attention in the last few years due to its outstanding physical, chemical, electrical, optical and mechanical properties. To further extend its potential applications, intensive research efforts have been devoted to the functionalization of graphene. Examples include improving graphene solubility by attaching different chemical functional groups to its basal plane, modulating the charge carrier type and concentration via surface transfer doping by coating it with various metals films or organic molecules, improving the bio-selectivity by decorating it with different π-conjugated organic molecules, and so on. Different methods have been developed to functionalize graphene. Among them, non-covalent molecular functionalization represents one of the most effective and promising methods. The extended π-conjugation is largely preserved without creating extensive structural defects on the graphene sheet, thereby retaining the high charge </span>carrier mobility<span>. In this review, a brief summary about different functionalization methods of graphene and its derivatives by covalent and non-covalent interactions will be presented, with particular focus on the non-covalent molecular functionalization. A broad review of the applications of non-covalently functionalized graphene and its derivatives will be presented in detail, including field-effect-transistors, organic optoelectronics, and molecular sensing.</span></span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"88 2","pages":"Pages 132-159"},"PeriodicalIF":8.7000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2013.02.001","citationCount":"156","resultStr":"{\"title\":\"Manipulating the electronic and chemical properties of graphene via molecular functionalization\",\"authors\":\"Hong Ying Mao , Yun Hao Lu , Jia Dan Lin , Shu Zhong , Andrew Thye Shen Wee , Wei Chen\",\"doi\":\"10.1016/j.progsurf.2013.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphene, a single atomic layer of sp<sup>2</sup><span><span>-hybridized carbon atoms arranged in a hexagonal structure and the Nobel winning material in 2010, has attracted extensive research attention in the last few years due to its outstanding physical, chemical, electrical, optical and mechanical properties. To further extend its potential applications, intensive research efforts have been devoted to the functionalization of graphene. Examples include improving graphene solubility by attaching different chemical functional groups to its basal plane, modulating the charge carrier type and concentration via surface transfer doping by coating it with various metals films or organic molecules, improving the bio-selectivity by decorating it with different π-conjugated organic molecules, and so on. Different methods have been developed to functionalize graphene. Among them, non-covalent molecular functionalization represents one of the most effective and promising methods. The extended π-conjugation is largely preserved without creating extensive structural defects on the graphene sheet, thereby retaining the high charge </span>carrier mobility<span>. In this review, a brief summary about different functionalization methods of graphene and its derivatives by covalent and non-covalent interactions will be presented, with particular focus on the non-covalent molecular functionalization. A broad review of the applications of non-covalently functionalized graphene and its derivatives will be presented in detail, including field-effect-transistors, organic optoelectronics, and molecular sensing.</span></span></p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"88 2\",\"pages\":\"Pages 132-159\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2013-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2013.02.001\",\"citationCount\":\"156\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681613000038\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681613000038","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Manipulating the electronic and chemical properties of graphene via molecular functionalization
Graphene, a single atomic layer of sp2-hybridized carbon atoms arranged in a hexagonal structure and the Nobel winning material in 2010, has attracted extensive research attention in the last few years due to its outstanding physical, chemical, electrical, optical and mechanical properties. To further extend its potential applications, intensive research efforts have been devoted to the functionalization of graphene. Examples include improving graphene solubility by attaching different chemical functional groups to its basal plane, modulating the charge carrier type and concentration via surface transfer doping by coating it with various metals films or organic molecules, improving the bio-selectivity by decorating it with different π-conjugated organic molecules, and so on. Different methods have been developed to functionalize graphene. Among them, non-covalent molecular functionalization represents one of the most effective and promising methods. The extended π-conjugation is largely preserved without creating extensive structural defects on the graphene sheet, thereby retaining the high charge carrier mobility. In this review, a brief summary about different functionalization methods of graphene and its derivatives by covalent and non-covalent interactions will be presented, with particular focus on the non-covalent molecular functionalization. A broad review of the applications of non-covalently functionalized graphene and its derivatives will be presented in detail, including field-effect-transistors, organic optoelectronics, and molecular sensing.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.