{"title":"NASA技术在骨科膝关节植入物优化设计中的应用。","authors":"D A Saravanos, P J Mraz, D T Davy, D A Hopkins","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>NASA technology originally developed for designing aircraft turbine-engine blades has been adapted and applied to orthopedic knee implants. This article describes a method for tailoring an implant for optimal interaction with the environment of the tibia. The implant components are designed to control stresses in the bone for minimizing bone degradation and preventing failures. Engineers expect the tailoring system to improve knee prosthesis design and allow customized implants for individual patients.</p>","PeriodicalId":80065,"journal":{"name":"Medical design and material","volume":"1 3","pages":"40-4"},"PeriodicalIF":0.0000,"publicationDate":"1991-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptation of NASA technology for the optimum design of orthopedic knee implants.\",\"authors\":\"D A Saravanos, P J Mraz, D T Davy, D A Hopkins\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NASA technology originally developed for designing aircraft turbine-engine blades has been adapted and applied to orthopedic knee implants. This article describes a method for tailoring an implant for optimal interaction with the environment of the tibia. The implant components are designed to control stresses in the bone for minimizing bone degradation and preventing failures. Engineers expect the tailoring system to improve knee prosthesis design and allow customized implants for individual patients.</p>\",\"PeriodicalId\":80065,\"journal\":{\"name\":\"Medical design and material\",\"volume\":\"1 3\",\"pages\":\"40-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical design and material\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical design and material","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptation of NASA technology for the optimum design of orthopedic knee implants.
NASA technology originally developed for designing aircraft turbine-engine blades has been adapted and applied to orthopedic knee implants. This article describes a method for tailoring an implant for optimal interaction with the environment of the tibia. The implant components are designed to control stresses in the bone for minimizing bone degradation and preventing failures. Engineers expect the tailoring system to improve knee prosthesis design and allow customized implants for individual patients.