三阶偏移的氮饱和潜水实验。

Z Y Shi
{"title":"三阶偏移的氮饱和潜水实验。","authors":"Z Y Shi","doi":"10.2114/jpa.17.249","DOIUrl":null,"url":null,"abstract":"<p><p>Depth limitations to diving operation with air as the breathing gas are well known: air density, oxygen toxicity, nitrogen narcosis and requirement for decompression. The main objectives of our experiment were to assess the decompression, counterdiffusion and performance aspect of helium-nitrogen-oxygen excursions from nitrox saturation. The experiment was carried out in a wet diving stimulator with \"igloo\" attached to a 2-lock living chamber. Four subjects of two teams of 2 divers were saturated at 25 msw simulated depth in a nitrogen oxygen chamber environment for 8 days, during which period they performed 32 divers-excursions to 60 or 80 msw pressure. Excursion gas mix was trimix of 14.6% oxygen, 50% helium and 35.4% nitrogen, which gave a bottom oxygen partial pressure of 1.0 bars at 60 msw and 1.3 at 80 msw. Excursions were for 70 min at 60 msw with three 10-min work periods and 40 min at 80 msw with two 10-min work periods. Work was on a bicycle ergometer at a moderate level. We calculated the excursion decompression with M-Values based on methods of Hamilton (Hamilton et al., 1990). Staged decompression took 70 min for the 60 msw excursion and 98 min for 80 msw, with stops beginning at 34 or 43 msw respectively. After the second dive day bubbles were heard mainly in one diver but in three divers overall, to Spencer Grade III some times. No symptoms were reported. Saturation decompression using the Repex procedures began at 40 msw and was uneventful: Grade II and sometimes III bubbles persisted in 2 of the four divers until 24 hr after surfacing. We conclude that excursions with mixture rich in helium can be performed effectively to as deep as 80 msw using these procedures.</p>","PeriodicalId":79317,"journal":{"name":"Applied human science : journal of physiological anthropology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2114/jpa.17.249","citationCount":"4","resultStr":"{\"title\":\"Experiment of nitrox saturation diving with trimix excursion.\",\"authors\":\"Z Y Shi\",\"doi\":\"10.2114/jpa.17.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Depth limitations to diving operation with air as the breathing gas are well known: air density, oxygen toxicity, nitrogen narcosis and requirement for decompression. The main objectives of our experiment were to assess the decompression, counterdiffusion and performance aspect of helium-nitrogen-oxygen excursions from nitrox saturation. The experiment was carried out in a wet diving stimulator with \\\"igloo\\\" attached to a 2-lock living chamber. Four subjects of two teams of 2 divers were saturated at 25 msw simulated depth in a nitrogen oxygen chamber environment for 8 days, during which period they performed 32 divers-excursions to 60 or 80 msw pressure. Excursion gas mix was trimix of 14.6% oxygen, 50% helium and 35.4% nitrogen, which gave a bottom oxygen partial pressure of 1.0 bars at 60 msw and 1.3 at 80 msw. Excursions were for 70 min at 60 msw with three 10-min work periods and 40 min at 80 msw with two 10-min work periods. Work was on a bicycle ergometer at a moderate level. We calculated the excursion decompression with M-Values based on methods of Hamilton (Hamilton et al., 1990). Staged decompression took 70 min for the 60 msw excursion and 98 min for 80 msw, with stops beginning at 34 or 43 msw respectively. After the second dive day bubbles were heard mainly in one diver but in three divers overall, to Spencer Grade III some times. No symptoms were reported. Saturation decompression using the Repex procedures began at 40 msw and was uneventful: Grade II and sometimes III bubbles persisted in 2 of the four divers until 24 hr after surfacing. We conclude that excursions with mixture rich in helium can be performed effectively to as deep as 80 msw using these procedures.</p>\",\"PeriodicalId\":79317,\"journal\":{\"name\":\"Applied human science : journal of physiological anthropology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2114/jpa.17.249\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied human science : journal of physiological anthropology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2114/jpa.17.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied human science : journal of physiological anthropology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2114/jpa.17.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

以空气为呼吸气体的潜水作业的深度限制是众所周知的:空气密度、氧毒性、氮麻醉和减压要求。我们实验的主要目的是评估从氮饱和出发的氦-氮-氧漂移的减压、反扩散和性能方面。实验是在一个带有“冰屋”的湿潜水刺激器中进行的,该“冰屋”连接着一个2锁的起居室。在8天的氮气氧舱环境中,由2名潜水员组成的2个小组的4名受试者在25毫微瓦的模拟深度下饱和,在此期间,他们在60或80毫微瓦的压力下进行了32次潜水。偏移气体混合为14.6%氧、50%氦和35.4%氮的混合物,在60 msw时,底部氧分压为1.0 bar,在80 msw时为1.3 bar。短途旅行在60msw进行70分钟,其中3个10分钟的工作时段;在80msw进行40分钟,其中2个10分钟的工作时段。工作是在一个自行车计力器在中等水平。我们基于Hamilton (Hamilton et al., 1990)的方法用m值计算偏移解压缩。60msw的分阶段减压用时70分钟,80msw的分阶段减压用时98分钟,分别从34 msw和43 msw开始停止。在第二个潜水日之后,主要在一名潜水员身上听到气泡,但在三名潜水员身上听到气泡,有时会听到斯宾塞III级。未报告任何症状。使用Repex程序的饱和减压开始于40 msw,并且平安无事:4名潜水员中有2名潜水员的II级和有时III级气泡在浮出水面24小时后仍然存在。我们的结论是,使用这些方法可以有效地进行富含氦的混合物的短途旅行,深度可达80 msw。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiment of nitrox saturation diving with trimix excursion.

Depth limitations to diving operation with air as the breathing gas are well known: air density, oxygen toxicity, nitrogen narcosis and requirement for decompression. The main objectives of our experiment were to assess the decompression, counterdiffusion and performance aspect of helium-nitrogen-oxygen excursions from nitrox saturation. The experiment was carried out in a wet diving stimulator with "igloo" attached to a 2-lock living chamber. Four subjects of two teams of 2 divers were saturated at 25 msw simulated depth in a nitrogen oxygen chamber environment for 8 days, during which period they performed 32 divers-excursions to 60 or 80 msw pressure. Excursion gas mix was trimix of 14.6% oxygen, 50% helium and 35.4% nitrogen, which gave a bottom oxygen partial pressure of 1.0 bars at 60 msw and 1.3 at 80 msw. Excursions were for 70 min at 60 msw with three 10-min work periods and 40 min at 80 msw with two 10-min work periods. Work was on a bicycle ergometer at a moderate level. We calculated the excursion decompression with M-Values based on methods of Hamilton (Hamilton et al., 1990). Staged decompression took 70 min for the 60 msw excursion and 98 min for 80 msw, with stops beginning at 34 or 43 msw respectively. After the second dive day bubbles were heard mainly in one diver but in three divers overall, to Spencer Grade III some times. No symptoms were reported. Saturation decompression using the Repex procedures began at 40 msw and was uneventful: Grade II and sometimes III bubbles persisted in 2 of the four divers until 24 hr after surfacing. We conclude that excursions with mixture rich in helium can be performed effectively to as deep as 80 msw using these procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信