生物矿化:冲突、挑战和机遇。

A L Boskey
{"title":"生物矿化:冲突、挑战和机遇。","authors":"A L Boskey","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Biomineralization is the process by which mineral crystals are deposited in an organized fashion in the matrix (either cellular or extracellular) of living organisms. Over the past 25 years, new insights into the mechanisms that control these processes have been obtained, yet questions asked then still persist, especially in terms of vertebrate mineralization. Specifically, there are still debates concerning the chemical nature of the first mineral crystals formed in bone, dentin, and cementum; the factors leading to the initial deposition of these crystals; and the functions of macromolecules found associated with these crystals. In this review, emphasis is placed on the currently accepted answers to these questions, drawing insight from nonvertebrate systems. It is suggested that there are redundant calcification mechanisms and that, by taking advantage of our current knowledge of these mechanisms, opportunities will be provided for therapeutic manipulation of diseases in which biomineralization is impaired.</p>","PeriodicalId":77196,"journal":{"name":"Journal of cellular biochemistry. Supplement","volume":"30-31 ","pages":"83-91"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomineralization: conflicts, challenges, and opportunities.\",\"authors\":\"A L Boskey\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomineralization is the process by which mineral crystals are deposited in an organized fashion in the matrix (either cellular or extracellular) of living organisms. Over the past 25 years, new insights into the mechanisms that control these processes have been obtained, yet questions asked then still persist, especially in terms of vertebrate mineralization. Specifically, there are still debates concerning the chemical nature of the first mineral crystals formed in bone, dentin, and cementum; the factors leading to the initial deposition of these crystals; and the functions of macromolecules found associated with these crystals. In this review, emphasis is placed on the currently accepted answers to these questions, drawing insight from nonvertebrate systems. It is suggested that there are redundant calcification mechanisms and that, by taking advantage of our current knowledge of these mechanisms, opportunities will be provided for therapeutic manipulation of diseases in which biomineralization is impaired.</p>\",\"PeriodicalId\":77196,\"journal\":{\"name\":\"Journal of cellular biochemistry. Supplement\",\"volume\":\"30-31 \",\"pages\":\"83-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cellular biochemistry. Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry. Supplement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物矿化是指矿物晶体以有组织的方式沉积在生物体的基质(细胞或细胞外)中的过程。在过去的25年里,人们对控制这些过程的机制有了新的认识,但当时提出的问题仍然存在,特别是在脊椎动物矿化方面。具体来说,关于在骨、牙本质和牙骨质中形成的第一批矿物晶体的化学性质仍然存在争议;导致这些晶体初始沉积的因素;以及与这些晶体相关的大分子的功能。在这篇综述中,重点放在目前接受的答案这些问题,从非脊椎动物系统的见解。这表明存在冗余的钙化机制,并且通过利用我们目前对这些机制的知识,将为生物矿化受损的疾病的治疗操作提供机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomineralization: conflicts, challenges, and opportunities.

Biomineralization is the process by which mineral crystals are deposited in an organized fashion in the matrix (either cellular or extracellular) of living organisms. Over the past 25 years, new insights into the mechanisms that control these processes have been obtained, yet questions asked then still persist, especially in terms of vertebrate mineralization. Specifically, there are still debates concerning the chemical nature of the first mineral crystals formed in bone, dentin, and cementum; the factors leading to the initial deposition of these crystals; and the functions of macromolecules found associated with these crystals. In this review, emphasis is placed on the currently accepted answers to these questions, drawing insight from nonvertebrate systems. It is suggested that there are redundant calcification mechanisms and that, by taking advantage of our current knowledge of these mechanisms, opportunities will be provided for therapeutic manipulation of diseases in which biomineralization is impaired.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信