西瓜抗枯萎病花粉管途径基因转移。

W S Chen, C C Chiu, H Y Liu, T L Lee, J T Cheng, C C Lin, Y J Wu, H Y Chang
{"title":"西瓜抗枯萎病花粉管途径基因转移。","authors":"W S Chen,&nbsp;C C Chiu,&nbsp;H Y Liu,&nbsp;T L Lee,&nbsp;J T Cheng,&nbsp;C C Lin,&nbsp;Y J Wu,&nbsp;H Y Chang","doi":"10.1080/15216549800204762","DOIUrl":null,"url":null,"abstract":"<p><p>In order to obtain transgenic fusarium wilt resistant watermelon plants, squash DNA was introduced into the ovaries of watermelon plants via the pollen-tube pathway. The introduction of foreign genes into ovaries was accomplished using co-transformation with the CaMV35S-GUS as a marker. Transformed watermelon plants contained integrated copies of the GUS activity and the seeds of transformed progeny produced a blue color when stained with 5-bromo-4-chloro-3-indolyl glucuronide, whereas seeds from untransformed control plants did not. Of 200 transformed seedlings, ten were wilt resistant. The presence of the GUS activity in the genome of stable transgenic seedlings was confirmed by Southern blot analysis. Furthermore, the generation of random amplified polymorphic DNA (RAPD) fingerprints using primers with embedded restriction sites showed amplification products unique to these transgenic plants. Primers OPA-1 and OPA-9 gave distinct band patterns of genomic DNA using the polymerase chain reaction.</p>","PeriodicalId":8770,"journal":{"name":"Biochemistry and molecular biology international","volume":"46 6","pages":"1201-9"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15216549800204762","citationCount":"38","resultStr":"{\"title\":\"Gene transfer via pollen-tube pathway for anti-fusarium wilt in watermelon.\",\"authors\":\"W S Chen,&nbsp;C C Chiu,&nbsp;H Y Liu,&nbsp;T L Lee,&nbsp;J T Cheng,&nbsp;C C Lin,&nbsp;Y J Wu,&nbsp;H Y Chang\",\"doi\":\"10.1080/15216549800204762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to obtain transgenic fusarium wilt resistant watermelon plants, squash DNA was introduced into the ovaries of watermelon plants via the pollen-tube pathway. The introduction of foreign genes into ovaries was accomplished using co-transformation with the CaMV35S-GUS as a marker. Transformed watermelon plants contained integrated copies of the GUS activity and the seeds of transformed progeny produced a blue color when stained with 5-bromo-4-chloro-3-indolyl glucuronide, whereas seeds from untransformed control plants did not. Of 200 transformed seedlings, ten were wilt resistant. The presence of the GUS activity in the genome of stable transgenic seedlings was confirmed by Southern blot analysis. Furthermore, the generation of random amplified polymorphic DNA (RAPD) fingerprints using primers with embedded restriction sites showed amplification products unique to these transgenic plants. Primers OPA-1 and OPA-9 gave distinct band patterns of genomic DNA using the polymerase chain reaction.</p>\",\"PeriodicalId\":8770,\"journal\":{\"name\":\"Biochemistry and molecular biology international\",\"volume\":\"46 6\",\"pages\":\"1201-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15216549800204762\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and molecular biology international\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15216549800204762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and molecular biology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15216549800204762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

为了获得抗枯萎病转基因西瓜植株,通过花粉管途径将南瓜DNA导入西瓜植株子房。以CaMV35S-GUS为标记共转化,完成外源基因导入子房。转化后的西瓜植株含有GUS活性的完整拷贝,并且在5-溴-4-氯-3-吲哚基葡萄糖醛酸盐染色时,转化后代的种子产生蓝色,而未转化的对照植株的种子则没有。在200株转化的幼苗中,有10株具有抗枯萎性。经Southern blot分析证实,稳定的转基因幼苗基因组中存在GUS活性。此外,利用嵌入限制性内切位点的引物生成的随机扩增多态性DNA (RAPD)指纹图谱显示了这些转基因植物特有的扩增产物。引物OPA-1和OPA-9通过聚合酶链反应得到了不同的基因组DNA带型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene transfer via pollen-tube pathway for anti-fusarium wilt in watermelon.

In order to obtain transgenic fusarium wilt resistant watermelon plants, squash DNA was introduced into the ovaries of watermelon plants via the pollen-tube pathway. The introduction of foreign genes into ovaries was accomplished using co-transformation with the CaMV35S-GUS as a marker. Transformed watermelon plants contained integrated copies of the GUS activity and the seeds of transformed progeny produced a blue color when stained with 5-bromo-4-chloro-3-indolyl glucuronide, whereas seeds from untransformed control plants did not. Of 200 transformed seedlings, ten were wilt resistant. The presence of the GUS activity in the genome of stable transgenic seedlings was confirmed by Southern blot analysis. Furthermore, the generation of random amplified polymorphic DNA (RAPD) fingerprints using primers with embedded restriction sites showed amplification products unique to these transgenic plants. Primers OPA-1 and OPA-9 gave distinct band patterns of genomic DNA using the polymerase chain reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信