P Pietta, P Simonetti, C Gardana, A Brusamolino, P Morazzoni, E Bombardelli
{"title":"儿茶素吸收速率和程度与血浆抗氧化状态的关系。","authors":"P Pietta, P Simonetti, C Gardana, A Brusamolino, P Morazzoni, E Bombardelli","doi":"10.1080/15216549800204442","DOIUrl":null,"url":null,"abstract":"<p><p>Flavonoids are described to exert a large array of biological activities, which are mostly ascribed to their radical-scavenging, metal chelating and enzyme modulation ability. Most of these evidences have been obtained by in vitro studies on individual compounds and at doses largely exceeding those dietary. Little is known about a possible relationship between rate and extent of the absorption and modifications of plasma antioxidants. To elucidate this aspect, human volunteers were supplemented with single doses of green tea catechins in free (Greenselect) or phospholipid complex form (Greenselect Phytosome) equivalent to 400 mg epigallocatechingallate (EGCg). EGCg was chosen as biomarker for green tea catechin absorption, and its time course plasma concentration was correlated to the subsequent percent variations of plasma ascorbate, total glutathione, alpha-tocopherol, beta-carotene and Total Radical Antioxidant Parameter (TRAP). Green tea catechins were absorbed more extensively when administered as phospholipid complex rather than as free catechins. Single dose intake of both forms of catechins produced a transient decrease (10-20%) of plasma ascorbate and total glutathione and an increase of plasma TRAP (16-19%). These variations were consistent with the plasmatic levels of EGCg, ascorbate and total glutathione.</p>","PeriodicalId":8770,"journal":{"name":"Biochemistry and molecular biology international","volume":"46 5","pages":"895-903"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15216549800204442","citationCount":"133","resultStr":"{\"title\":\"Relationship between rate and extent of catechin absorption and plasma antioxidant status.\",\"authors\":\"P Pietta, P Simonetti, C Gardana, A Brusamolino, P Morazzoni, E Bombardelli\",\"doi\":\"10.1080/15216549800204442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flavonoids are described to exert a large array of biological activities, which are mostly ascribed to their radical-scavenging, metal chelating and enzyme modulation ability. Most of these evidences have been obtained by in vitro studies on individual compounds and at doses largely exceeding those dietary. Little is known about a possible relationship between rate and extent of the absorption and modifications of plasma antioxidants. To elucidate this aspect, human volunteers were supplemented with single doses of green tea catechins in free (Greenselect) or phospholipid complex form (Greenselect Phytosome) equivalent to 400 mg epigallocatechingallate (EGCg). EGCg was chosen as biomarker for green tea catechin absorption, and its time course plasma concentration was correlated to the subsequent percent variations of plasma ascorbate, total glutathione, alpha-tocopherol, beta-carotene and Total Radical Antioxidant Parameter (TRAP). Green tea catechins were absorbed more extensively when administered as phospholipid complex rather than as free catechins. Single dose intake of both forms of catechins produced a transient decrease (10-20%) of plasma ascorbate and total glutathione and an increase of plasma TRAP (16-19%). These variations were consistent with the plasmatic levels of EGCg, ascorbate and total glutathione.</p>\",\"PeriodicalId\":8770,\"journal\":{\"name\":\"Biochemistry and molecular biology international\",\"volume\":\"46 5\",\"pages\":\"895-903\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15216549800204442\",\"citationCount\":\"133\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and molecular biology international\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15216549800204442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and molecular biology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15216549800204442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relationship between rate and extent of catechin absorption and plasma antioxidant status.
Flavonoids are described to exert a large array of biological activities, which are mostly ascribed to their radical-scavenging, metal chelating and enzyme modulation ability. Most of these evidences have been obtained by in vitro studies on individual compounds and at doses largely exceeding those dietary. Little is known about a possible relationship between rate and extent of the absorption and modifications of plasma antioxidants. To elucidate this aspect, human volunteers were supplemented with single doses of green tea catechins in free (Greenselect) or phospholipid complex form (Greenselect Phytosome) equivalent to 400 mg epigallocatechingallate (EGCg). EGCg was chosen as biomarker for green tea catechin absorption, and its time course plasma concentration was correlated to the subsequent percent variations of plasma ascorbate, total glutathione, alpha-tocopherol, beta-carotene and Total Radical Antioxidant Parameter (TRAP). Green tea catechins were absorbed more extensively when administered as phospholipid complex rather than as free catechins. Single dose intake of both forms of catechins produced a transient decrease (10-20%) of plasma ascorbate and total glutathione and an increase of plasma TRAP (16-19%). These variations were consistent with the plasmatic levels of EGCg, ascorbate and total glutathione.