钙蛋白酶对大鼠脑缺血的双重反应。

T Zalewska, B Zabłocka, T C Saido, H Zajac, K Domańska-Janik
{"title":"钙蛋白酶对大鼠脑缺血的双重反应。","authors":"T Zalewska,&nbsp;B Zabłocka,&nbsp;T C Saido,&nbsp;H Zajac,&nbsp;K Domańska-Janik","doi":"10.1007/BF02815181","DOIUrl":null,"url":null,"abstract":"<p><p>Calpains, Ca(2+)-dependent neutral proteinases (microM and mM Ca(2+)-sensitive), and their endogenous inhibitor calpastatin were examined in rat brain. Specific activity of m-calpain exceeded almost 10 times that of mu-calpain, and the both isoforms of calpain together with calpastatin were mainly located in the soluble fraction of homogenate. Acute postdecapitative ischemia of 15 min duration resulted in a gradual, time-dependent decrease of total mu-calpain activity (to 60% of control values) and in the moderate elevation of calpastatin activity (by 28%). The decrease of total mu-calpain activity coincided with its remarkable increase (above 300% of control values) in particulate fraction. In the case of m-calpain, the only observed effect of ischemia was its redistribution and, as a consequence, the elevation of activity in particulate fraction. The accumulation of breakdown products, resulting from calpain-catalyzed proteolysis of fodrin (as revealed by Western blotting) indicated activation of calpain under ischemia. The findings suggest that this rapid activation involves partial enzyme translocation toward membranes, and is followed (at least in acute phase) by mu-calpain downregulation and increased calpastatin activity.</p>","PeriodicalId":18736,"journal":{"name":"Molecular and chemical neuropathology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02815181","citationCount":"21","resultStr":"{\"title\":\"Dual response of calpain to rat brain postdecapitative ischemia.\",\"authors\":\"T Zalewska,&nbsp;B Zabłocka,&nbsp;T C Saido,&nbsp;H Zajac,&nbsp;K Domańska-Janik\",\"doi\":\"10.1007/BF02815181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Calpains, Ca(2+)-dependent neutral proteinases (microM and mM Ca(2+)-sensitive), and their endogenous inhibitor calpastatin were examined in rat brain. Specific activity of m-calpain exceeded almost 10 times that of mu-calpain, and the both isoforms of calpain together with calpastatin were mainly located in the soluble fraction of homogenate. Acute postdecapitative ischemia of 15 min duration resulted in a gradual, time-dependent decrease of total mu-calpain activity (to 60% of control values) and in the moderate elevation of calpastatin activity (by 28%). The decrease of total mu-calpain activity coincided with its remarkable increase (above 300% of control values) in particulate fraction. In the case of m-calpain, the only observed effect of ischemia was its redistribution and, as a consequence, the elevation of activity in particulate fraction. The accumulation of breakdown products, resulting from calpain-catalyzed proteolysis of fodrin (as revealed by Western blotting) indicated activation of calpain under ischemia. The findings suggest that this rapid activation involves partial enzyme translocation toward membranes, and is followed (at least in acute phase) by mu-calpain downregulation and increased calpastatin activity.</p>\",\"PeriodicalId\":18736,\"journal\":{\"name\":\"Molecular and chemical neuropathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF02815181\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and chemical neuropathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02815181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and chemical neuropathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02815181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

研究了大鼠脑内钙蛋白酶、钙(2+)依赖性中性蛋白酶(microM和mM Ca(2+)敏感)及其内源性抑制剂钙pastatin。m-calpain的比活性几乎是mu-calpain的10倍,并且calpain和calpastatin的两种同工型主要位于匀浆的可溶部分。急性缺血持续15分钟导致总mu-calpain活性逐渐下降(降至控制值的60%),calpastatin活性中度升高(28%)。总钙蛋白酶活性的降低与颗粒组分中总钙蛋白酶活性的显著升高(高于控制值的300%)一致。在m-calpain的情况下,唯一观察到的缺血效应是其重新分布,因此,颗粒部分的活性升高。由calpain催化的fodrin蛋白水解引起的分解产物的积累(Western blotting显示)表明calpain在缺血下被激活。研究结果表明,这种快速激活涉及部分酶向膜的易位,随后(至少在急性期)是mu-calpain下调和calpastatin活性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual response of calpain to rat brain postdecapitative ischemia.

Calpains, Ca(2+)-dependent neutral proteinases (microM and mM Ca(2+)-sensitive), and their endogenous inhibitor calpastatin were examined in rat brain. Specific activity of m-calpain exceeded almost 10 times that of mu-calpain, and the both isoforms of calpain together with calpastatin were mainly located in the soluble fraction of homogenate. Acute postdecapitative ischemia of 15 min duration resulted in a gradual, time-dependent decrease of total mu-calpain activity (to 60% of control values) and in the moderate elevation of calpastatin activity (by 28%). The decrease of total mu-calpain activity coincided with its remarkable increase (above 300% of control values) in particulate fraction. In the case of m-calpain, the only observed effect of ischemia was its redistribution and, as a consequence, the elevation of activity in particulate fraction. The accumulation of breakdown products, resulting from calpain-catalyzed proteolysis of fodrin (as revealed by Western blotting) indicated activation of calpain under ischemia. The findings suggest that this rapid activation involves partial enzyme translocation toward membranes, and is followed (at least in acute phase) by mu-calpain downregulation and increased calpastatin activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信