S T Ryan, G Chi-Rosso, L L Bonnycastle, J K Scott, V Koteliansky, S Pollard, P J Gotwals
{"title":"功能阻断β 1整合素抗体的噬菌体展示表位定位。","authors":"S T Ryan, G Chi-Rosso, L L Bonnycastle, J K Scott, V Koteliansky, S Pollard, P J Gotwals","doi":"10.3109/15419069809005600","DOIUrl":null,"url":null,"abstract":"<p><p>Integrins are a major class of cell surface receptors involved in cell-cell and cell-matrix adhesion and communication. Ha2/11 is a function-blocking anti-rat beta 1 integrin hamster IgM that should be a useful reagent for understanding beta 1 integrin function. We demonstrate that Ha2/11 cross reacts with human, Xenopus, and Drosophila beta 1 integrins, and use phage display to map the epitope for Ha2/11 to residues within the sequence LRSGEPQTF which lies 18 amino acids proximal to the putative I domain in beta 1 integrins. Monoclonal antibody mapping experiments, mutational analyses, and direct binding assays have implicated integrin I domains in both cation and ligand binding. Our data therefore suggest that Ha2/11 blocks beta 1 integrin function by interfering with I domain-mediated ligand binding.</p>","PeriodicalId":79325,"journal":{"name":"Cell adhesion and communication","volume":"5 1","pages":"75-82"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419069809005600","citationCount":"4","resultStr":"{\"title\":\"Epitope mapping of a function-blocking beta 1 integrin antibody by phage display.\",\"authors\":\"S T Ryan, G Chi-Rosso, L L Bonnycastle, J K Scott, V Koteliansky, S Pollard, P J Gotwals\",\"doi\":\"10.3109/15419069809005600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrins are a major class of cell surface receptors involved in cell-cell and cell-matrix adhesion and communication. Ha2/11 is a function-blocking anti-rat beta 1 integrin hamster IgM that should be a useful reagent for understanding beta 1 integrin function. We demonstrate that Ha2/11 cross reacts with human, Xenopus, and Drosophila beta 1 integrins, and use phage display to map the epitope for Ha2/11 to residues within the sequence LRSGEPQTF which lies 18 amino acids proximal to the putative I domain in beta 1 integrins. Monoclonal antibody mapping experiments, mutational analyses, and direct binding assays have implicated integrin I domains in both cation and ligand binding. Our data therefore suggest that Ha2/11 blocks beta 1 integrin function by interfering with I domain-mediated ligand binding.</p>\",\"PeriodicalId\":79325,\"journal\":{\"name\":\"Cell adhesion and communication\",\"volume\":\"5 1\",\"pages\":\"75-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/15419069809005600\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell adhesion and communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/15419069809005600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell adhesion and communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419069809005600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Epitope mapping of a function-blocking beta 1 integrin antibody by phage display.
Integrins are a major class of cell surface receptors involved in cell-cell and cell-matrix adhesion and communication. Ha2/11 is a function-blocking anti-rat beta 1 integrin hamster IgM that should be a useful reagent for understanding beta 1 integrin function. We demonstrate that Ha2/11 cross reacts with human, Xenopus, and Drosophila beta 1 integrins, and use phage display to map the epitope for Ha2/11 to residues within the sequence LRSGEPQTF which lies 18 amino acids proximal to the putative I domain in beta 1 integrins. Monoclonal antibody mapping experiments, mutational analyses, and direct binding assays have implicated integrin I domains in both cation and ligand binding. Our data therefore suggest that Ha2/11 blocks beta 1 integrin function by interfering with I domain-mediated ligand binding.