{"title":"海胆胚顶层及其在细胞粘附中的作用。","authors":"R D Burke, M Lail, Y Nakajima","doi":"10.3109/15419069809040284","DOIUrl":null,"url":null,"abstract":"<p><p>The hyaline layer (HL) is an extracellular matrix surrounding sea urchin embryos which has been implicated in a cell adhesion and morphogenesis. The apical lamina (AL) is a fibrous meshwork that remains after removal of hyalin from the HL and the fibropellins (FP) are glycoproteins thought to be the principal components of the AL. Using anti-FP antibodies (AL-1 and AL-2) we report immunoprecipitations and affinity purifications yield a high molecular weight complex comprised of the FP glycoproteins. The three components form a complex, stabilized by disulphide cross-linking and have stochiometric ratios of 2 FPIa molecules to 1 each of FPIb and FPIII. Pulse chase experiments indicate all 3 FP's are synthesized throughout development with peaks in synthesis during cleavage and a sustained peak beginning at hatching. Using immunogold and immunoperoxidase localization, the FP localize to a fibrillar complex forming the innermost layer of the HL. In cell adhesion experiments, cells adhere to affinity purified FP in a temperature, time and concentration dependent manner. Cell adhesion to Fp is about 70% of that seen when hyalin is used as a substrate. Pretreating with AL-1 and AL-2 reduces in vitro cell adhesion by about 65%. We conclude FP's form a fibrillar complex, which is synthesized throughout early development and functions, with other components of the HL, as a substrate for cell adhesion.</p>","PeriodicalId":79325,"journal":{"name":"Cell adhesion and communication","volume":"5 2","pages":"97-108"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419069809040284","citationCount":"24","resultStr":"{\"title\":\"The apical lamina and its role in cell adhesion in sea urchin embryos.\",\"authors\":\"R D Burke, M Lail, Y Nakajima\",\"doi\":\"10.3109/15419069809040284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hyaline layer (HL) is an extracellular matrix surrounding sea urchin embryos which has been implicated in a cell adhesion and morphogenesis. The apical lamina (AL) is a fibrous meshwork that remains after removal of hyalin from the HL and the fibropellins (FP) are glycoproteins thought to be the principal components of the AL. Using anti-FP antibodies (AL-1 and AL-2) we report immunoprecipitations and affinity purifications yield a high molecular weight complex comprised of the FP glycoproteins. The three components form a complex, stabilized by disulphide cross-linking and have stochiometric ratios of 2 FPIa molecules to 1 each of FPIb and FPIII. Pulse chase experiments indicate all 3 FP's are synthesized throughout development with peaks in synthesis during cleavage and a sustained peak beginning at hatching. Using immunogold and immunoperoxidase localization, the FP localize to a fibrillar complex forming the innermost layer of the HL. In cell adhesion experiments, cells adhere to affinity purified FP in a temperature, time and concentration dependent manner. Cell adhesion to Fp is about 70% of that seen when hyalin is used as a substrate. Pretreating with AL-1 and AL-2 reduces in vitro cell adhesion by about 65%. We conclude FP's form a fibrillar complex, which is synthesized throughout early development and functions, with other components of the HL, as a substrate for cell adhesion.</p>\",\"PeriodicalId\":79325,\"journal\":{\"name\":\"Cell adhesion and communication\",\"volume\":\"5 2\",\"pages\":\"97-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/15419069809040284\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell adhesion and communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/15419069809040284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell adhesion and communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419069809040284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The apical lamina and its role in cell adhesion in sea urchin embryos.
The hyaline layer (HL) is an extracellular matrix surrounding sea urchin embryos which has been implicated in a cell adhesion and morphogenesis. The apical lamina (AL) is a fibrous meshwork that remains after removal of hyalin from the HL and the fibropellins (FP) are glycoproteins thought to be the principal components of the AL. Using anti-FP antibodies (AL-1 and AL-2) we report immunoprecipitations and affinity purifications yield a high molecular weight complex comprised of the FP glycoproteins. The three components form a complex, stabilized by disulphide cross-linking and have stochiometric ratios of 2 FPIa molecules to 1 each of FPIb and FPIII. Pulse chase experiments indicate all 3 FP's are synthesized throughout development with peaks in synthesis during cleavage and a sustained peak beginning at hatching. Using immunogold and immunoperoxidase localization, the FP localize to a fibrillar complex forming the innermost layer of the HL. In cell adhesion experiments, cells adhere to affinity purified FP in a temperature, time and concentration dependent manner. Cell adhesion to Fp is about 70% of that seen when hyalin is used as a substrate. Pretreating with AL-1 and AL-2 reduces in vitro cell adhesion by about 65%. We conclude FP's form a fibrillar complex, which is synthesized throughout early development and functions, with other components of the HL, as a substrate for cell adhesion.