William James Thoman, Samsun Lampotang, Dietrich Gravenstein, Jan van der Aa
{"title":"集成到全尺寸患者模拟器的颅内动力学计算机模型","authors":"William James Thoman, Samsun Lampotang, Dietrich Gravenstein, Jan van der Aa","doi":"10.1006/cbmr.1997.1463","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to visualize intracranial dynamics during simulated clinical scenarios is a valuable tool for teaching brain physiology and the consequences of different medical interventions on the brain. Studies have isolated physiologic variables and shown their effects on brain dynamics. However, no studies have shown the combined effects of these variables on intracranial dynamics. This brain model offers one approach that brings all these relationships together and shows how they affect the dynamics of the brain. The brain model obtains its physiologic inputs from a full-scale patient simulator which responds to clinical interventions. This integration allows individuals working on the patient simulator to see the effects of their actions on brain dynamics. The brain model gives a real-time display of intracranial events (cerebral metabolic rate, cerebral blood flow, cerebral blood volume, cerebral perfusion pressure, and intracranial pressure) and responds to changes in the pulmonary and cardiovascular condition of the patient simulator.</p></div>","PeriodicalId":75733,"journal":{"name":"Computers and biomedical research, an international journal","volume":"31 1","pages":"Pages 32-46"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/cbmr.1997.1463","citationCount":"14","resultStr":"{\"title\":\"A Computer Model of Intracranial Dynamics Integrated to a Full-Scale Patient Simulator\",\"authors\":\"William James Thoman, Samsun Lampotang, Dietrich Gravenstein, Jan van der Aa\",\"doi\":\"10.1006/cbmr.1997.1463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ability to visualize intracranial dynamics during simulated clinical scenarios is a valuable tool for teaching brain physiology and the consequences of different medical interventions on the brain. Studies have isolated physiologic variables and shown their effects on brain dynamics. However, no studies have shown the combined effects of these variables on intracranial dynamics. This brain model offers one approach that brings all these relationships together and shows how they affect the dynamics of the brain. The brain model obtains its physiologic inputs from a full-scale patient simulator which responds to clinical interventions. This integration allows individuals working on the patient simulator to see the effects of their actions on brain dynamics. The brain model gives a real-time display of intracranial events (cerebral metabolic rate, cerebral blood flow, cerebral blood volume, cerebral perfusion pressure, and intracranial pressure) and responds to changes in the pulmonary and cardiovascular condition of the patient simulator.</p></div>\",\"PeriodicalId\":75733,\"journal\":{\"name\":\"Computers and biomedical research, an international journal\",\"volume\":\"31 1\",\"pages\":\"Pages 32-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/cbmr.1997.1463\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and biomedical research, an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010480997914634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and biomedical research, an international journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010480997914634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Computer Model of Intracranial Dynamics Integrated to a Full-Scale Patient Simulator
The ability to visualize intracranial dynamics during simulated clinical scenarios is a valuable tool for teaching brain physiology and the consequences of different medical interventions on the brain. Studies have isolated physiologic variables and shown their effects on brain dynamics. However, no studies have shown the combined effects of these variables on intracranial dynamics. This brain model offers one approach that brings all these relationships together and shows how they affect the dynamics of the brain. The brain model obtains its physiologic inputs from a full-scale patient simulator which responds to clinical interventions. This integration allows individuals working on the patient simulator to see the effects of their actions on brain dynamics. The brain model gives a real-time display of intracranial events (cerebral metabolic rate, cerebral blood flow, cerebral blood volume, cerebral perfusion pressure, and intracranial pressure) and responds to changes in the pulmonary and cardiovascular condition of the patient simulator.