甲萘醌诱导的细胞变性与人癌细胞的脂质过氧化有关。

T J Chiou, Y T Chou, W F Tzeng
{"title":"甲萘醌诱导的细胞变性与人癌细胞的脂质过氧化有关。","authors":"T J Chiou,&nbsp;Y T Chou,&nbsp;W F Tzeng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The role of lipid peroxidation, intracellular glutathione and Ca2+ concentration in menadione-mediated toxicity was investigated in human hepatoma cell lines, Hep G2 and Hep 3B, and in human leukemia cell lines, CCRF-CEM and MOLT-3. Incubation of these cells with 80 microM menadione at 37 degrees C resulted in depletion of intracellular glutathione, increased intracellular Ca2+, and increased lipid peroxidation, events leading to cell degeneration. The sensitivity of these cells to menadione, in order, was: Hep G2 cells > Hep 3B cells > CCRF-CEM cells and MOLT-3 cells. The extent of menadione-induced lipid peroxidation in different cell types followed the same order as did their susceptibility to menadione-induced cell degeneration. The menadione-induced depletion in glutathione level was in the following sequence: Hep G2 cells > MOLT-3 and CCRF-CEM cells > Hep 3B cells. The extent of the menadione-induced increase in the intracellular Ca2+ concentration was: Hep G2 cells > Molt-3 cells > CCRF-CEM cells and Hep 3B cells. Pre-treatment of Hep G2 cells with 20 mM deferoxamine mesylate, an iron chelator, reduced both the menadione-induced cell degeneration and lipid peroxidation; however, it did not prevent the menadione-induced increase in intracellular Ca2+ nor the depletion of glutathione. These data suggest that menadione-induced cell degeneration is directly linked to lipid peroxidation, and that it is less related to the rise in intracellular Ca2+ and the depletion in glutathione content. Dicumarol (an inhibitor of DT diaphorase) enhanced the capacity of menadione to induce Hep 3B cell degeneration from 71.3% to 86.2% after 120 min of menadione treatment at 37 degrees C, but did not have this effect in Hep G2, CCRF-CEM or MOLT-3 cells. The activities of DT diaphorase were 52.4, 39.6, 1.5 and 1.8 nmol cytochrome c reduced/min/mg protein in Hep G2, Hep 3B, CCRF-CEM and MOLT-3 cells, respectively. The activity of DT diaphorase was much higher in Hep G2 cells than in the other cells. It seems that DT diaphorase may not, as suggested by others, protect against cell degeneration by quinones, such as menadione.</p>","PeriodicalId":20569,"journal":{"name":"Proceedings of the National Science Council, Republic of China. Part B, Life sciences","volume":"22 1","pages":"13-21"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Menadione-induced cell degeneration is related to lipid peroxidation in human cancer cells.\",\"authors\":\"T J Chiou,&nbsp;Y T Chou,&nbsp;W F Tzeng\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of lipid peroxidation, intracellular glutathione and Ca2+ concentration in menadione-mediated toxicity was investigated in human hepatoma cell lines, Hep G2 and Hep 3B, and in human leukemia cell lines, CCRF-CEM and MOLT-3. Incubation of these cells with 80 microM menadione at 37 degrees C resulted in depletion of intracellular glutathione, increased intracellular Ca2+, and increased lipid peroxidation, events leading to cell degeneration. The sensitivity of these cells to menadione, in order, was: Hep G2 cells > Hep 3B cells > CCRF-CEM cells and MOLT-3 cells. The extent of menadione-induced lipid peroxidation in different cell types followed the same order as did their susceptibility to menadione-induced cell degeneration. The menadione-induced depletion in glutathione level was in the following sequence: Hep G2 cells > MOLT-3 and CCRF-CEM cells > Hep 3B cells. The extent of the menadione-induced increase in the intracellular Ca2+ concentration was: Hep G2 cells > Molt-3 cells > CCRF-CEM cells and Hep 3B cells. Pre-treatment of Hep G2 cells with 20 mM deferoxamine mesylate, an iron chelator, reduced both the menadione-induced cell degeneration and lipid peroxidation; however, it did not prevent the menadione-induced increase in intracellular Ca2+ nor the depletion of glutathione. These data suggest that menadione-induced cell degeneration is directly linked to lipid peroxidation, and that it is less related to the rise in intracellular Ca2+ and the depletion in glutathione content. Dicumarol (an inhibitor of DT diaphorase) enhanced the capacity of menadione to induce Hep 3B cell degeneration from 71.3% to 86.2% after 120 min of menadione treatment at 37 degrees C, but did not have this effect in Hep G2, CCRF-CEM or MOLT-3 cells. The activities of DT diaphorase were 52.4, 39.6, 1.5 and 1.8 nmol cytochrome c reduced/min/mg protein in Hep G2, Hep 3B, CCRF-CEM and MOLT-3 cells, respectively. The activity of DT diaphorase was much higher in Hep G2 cells than in the other cells. It seems that DT diaphorase may not, as suggested by others, protect against cell degeneration by quinones, such as menadione.</p>\",\"PeriodicalId\":20569,\"journal\":{\"name\":\"Proceedings of the National Science Council, Republic of China. Part B, Life sciences\",\"volume\":\"22 1\",\"pages\":\"13-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Science Council, Republic of China. Part B, Life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Science Council, Republic of China. Part B, Life sciences","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在人肝癌细胞系Hep G2和Hep 3B以及人白血病细胞系CCRF-CEM和MOLT-3中研究了脂质过氧化、细胞内谷胱甘肽和Ca2+浓度在甲萘醌介导的毒性中的作用。将这些细胞与80微米的甲萘醌在37摄氏度下孵育,导致细胞内谷胱甘肽耗竭,细胞内Ca2+增加,脂质过氧化增加,导致细胞变性。这些细胞对甲萘醌的敏感性依次为:Hep G2细胞> Hep 3B细胞> CCRF-CEM细胞和MOLT-3细胞。甲萘醌诱导的脂质过氧化程度在不同类型的细胞中与它们对甲萘醌诱导的细胞变性的易感性顺序相同。甲萘醌诱导的谷胱甘肽水平降低的顺序为:Hep G2细胞> MOLT-3和CCRF-CEM细胞> Hep 3B细胞。甲萘醌诱导细胞内Ca2+浓度升高的程度为:Hep G2细胞> Molt-3细胞> CCRF-CEM细胞和Hep 3B细胞。用20 mM甲磺酸去铁胺(一种铁螯合剂)预处理Hep G2细胞,可减少甲萘醌诱导的细胞变性和脂质过氧化;然而,它并不能阻止甲萘醌诱导的细胞内Ca2+的增加和谷胱甘肽的消耗。这些数据表明甲萘醌诱导的细胞变性与脂质过氧化直接相关,而与细胞内Ca2+升高和谷胱甘肽含量减少的关系较小。diumarol (DT diaphorase的一种抑制剂)在37℃的menadione治疗120分钟后,使menadione诱导Hep 3B细胞变性的能力从71.3%提高到86.2%,但在Hep G2、CCRF-CEM或MOLT-3细胞中没有这种作用。在Hep G2、Hep 3B、CCRF-CEM和MOLT-3细胞中,DT脱氢酶活性分别为52.4、39.6、1.5和1.8 nmol细胞色素c还原蛋白/min/mg。Hep G2细胞的DT脱氢酶活性明显高于其他细胞。似乎DT - diaphorase可能不像其他人认为的那样,保护细胞免受醌(如甲萘醌)的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Menadione-induced cell degeneration is related to lipid peroxidation in human cancer cells.

The role of lipid peroxidation, intracellular glutathione and Ca2+ concentration in menadione-mediated toxicity was investigated in human hepatoma cell lines, Hep G2 and Hep 3B, and in human leukemia cell lines, CCRF-CEM and MOLT-3. Incubation of these cells with 80 microM menadione at 37 degrees C resulted in depletion of intracellular glutathione, increased intracellular Ca2+, and increased lipid peroxidation, events leading to cell degeneration. The sensitivity of these cells to menadione, in order, was: Hep G2 cells > Hep 3B cells > CCRF-CEM cells and MOLT-3 cells. The extent of menadione-induced lipid peroxidation in different cell types followed the same order as did their susceptibility to menadione-induced cell degeneration. The menadione-induced depletion in glutathione level was in the following sequence: Hep G2 cells > MOLT-3 and CCRF-CEM cells > Hep 3B cells. The extent of the menadione-induced increase in the intracellular Ca2+ concentration was: Hep G2 cells > Molt-3 cells > CCRF-CEM cells and Hep 3B cells. Pre-treatment of Hep G2 cells with 20 mM deferoxamine mesylate, an iron chelator, reduced both the menadione-induced cell degeneration and lipid peroxidation; however, it did not prevent the menadione-induced increase in intracellular Ca2+ nor the depletion of glutathione. These data suggest that menadione-induced cell degeneration is directly linked to lipid peroxidation, and that it is less related to the rise in intracellular Ca2+ and the depletion in glutathione content. Dicumarol (an inhibitor of DT diaphorase) enhanced the capacity of menadione to induce Hep 3B cell degeneration from 71.3% to 86.2% after 120 min of menadione treatment at 37 degrees C, but did not have this effect in Hep G2, CCRF-CEM or MOLT-3 cells. The activities of DT diaphorase were 52.4, 39.6, 1.5 and 1.8 nmol cytochrome c reduced/min/mg protein in Hep G2, Hep 3B, CCRF-CEM and MOLT-3 cells, respectively. The activity of DT diaphorase was much higher in Hep G2 cells than in the other cells. It seems that DT diaphorase may not, as suggested by others, protect against cell degeneration by quinones, such as menadione.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信