端粒和端粒酶:它们是如何相互作用的?

E Blackburn, A Bhattacharyya, D Gilley, K Kirk, A Krauskopf, M McEachern, J Prescott, T Ware
{"title":"端粒和端粒酶:它们是如何相互作用的?","authors":"E Blackburn,&nbsp;A Bhattacharyya,&nbsp;D Gilley,&nbsp;K Kirk,&nbsp;A Krauskopf,&nbsp;M McEachern,&nbsp;J Prescott,&nbsp;T Ware","doi":"10.1002/9780470515433.ch2","DOIUrl":null,"url":null,"abstract":"<p><p>The tandemly repeated DNA sequence of telomeres is typically specified by the ribonucleoprotein enzyme telomerase. Telomerase copies part of its intrinsic RNA moiety to make one strand of the telomeric repeat DNA. Recent work has led to the concept of a telomere homeostasis system. We have been studying two key physical components of this system: the telomere itself and telomerase. Mutating the template sequence of telomerase RNA caused various phenotypes: (1) mutating specific residues in the ciliate Tetrahymena and two yeasts showed that they are required for critical aspects of telomerase action; (2) certain mutated telomeric sequences caused a previously unreported phenotype, i.e. a strong anaphase block in Tetrahymena micronuclei; and (3) certain template mutations in the telomerase RNA gene of the yeast Kluyveromyces lactis led to unregulated telomere elongation, which in some cases was directly related to loss of binding to K. lactis Rap1p. Using K. lactis carrying alterations in the genes for Rap1p and other silencing components, we proposed a general model for telomere length homeostasis: namely, that the structure and DNA length of the DNA-protein complex that comprises the telomere are key determinants of telomerase access, and hence the frequency of action of telomerase, at the telomere.</p>","PeriodicalId":10218,"journal":{"name":"Ciba Foundation symposium","volume":"211 ","pages":"2-13; discussion 15-9"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"The telomere and telomerase: how do they interact?\",\"authors\":\"E Blackburn,&nbsp;A Bhattacharyya,&nbsp;D Gilley,&nbsp;K Kirk,&nbsp;A Krauskopf,&nbsp;M McEachern,&nbsp;J Prescott,&nbsp;T Ware\",\"doi\":\"10.1002/9780470515433.ch2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The tandemly repeated DNA sequence of telomeres is typically specified by the ribonucleoprotein enzyme telomerase. Telomerase copies part of its intrinsic RNA moiety to make one strand of the telomeric repeat DNA. Recent work has led to the concept of a telomere homeostasis system. We have been studying two key physical components of this system: the telomere itself and telomerase. Mutating the template sequence of telomerase RNA caused various phenotypes: (1) mutating specific residues in the ciliate Tetrahymena and two yeasts showed that they are required for critical aspects of telomerase action; (2) certain mutated telomeric sequences caused a previously unreported phenotype, i.e. a strong anaphase block in Tetrahymena micronuclei; and (3) certain template mutations in the telomerase RNA gene of the yeast Kluyveromyces lactis led to unregulated telomere elongation, which in some cases was directly related to loss of binding to K. lactis Rap1p. Using K. lactis carrying alterations in the genes for Rap1p and other silencing components, we proposed a general model for telomere length homeostasis: namely, that the structure and DNA length of the DNA-protein complex that comprises the telomere are key determinants of telomerase access, and hence the frequency of action of telomerase, at the telomere.</p>\",\"PeriodicalId\":10218,\"journal\":{\"name\":\"Ciba Foundation symposium\",\"volume\":\"211 \",\"pages\":\"2-13; discussion 15-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciba Foundation symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9780470515433.ch2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciba Foundation symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470515433.ch2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

端粒串联重复的DNA序列通常由核糖核蛋白酶端粒酶指定。端粒酶复制其固有RNA片段的一部分,使端粒重复DNA的一条链。最近的研究提出了端粒动态平衡系统的概念。我们一直在研究这个系统的两个关键物理组成部分:端粒本身和端粒酶。端粒酶RNA模板序列的突变导致了不同的表型:(1)在纤毛虫四膜虫和两种酵母中突变特异性残基表明它们是端粒酶作用的关键方面所必需的;(2)某些突变的端粒序列导致了一种以前未报道的表型,即四膜虫微核中强烈的后期阻滞;(3)酵母菌的端粒酶RNA基因的某些模板突变导致端粒延长不受调节,在某些情况下,这与失去与K. lactis Rap1p的结合直接相关。利用携带Rap1p基因和其他沉默成分基因改变的乳酸菌,我们提出了端粒长度稳态的一般模型:即,组成端粒的DNA-蛋白质复合物的结构和DNA长度是端粒酶进入的关键决定因素,因此端粒酶在端粒上的作用频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The telomere and telomerase: how do they interact?

The tandemly repeated DNA sequence of telomeres is typically specified by the ribonucleoprotein enzyme telomerase. Telomerase copies part of its intrinsic RNA moiety to make one strand of the telomeric repeat DNA. Recent work has led to the concept of a telomere homeostasis system. We have been studying two key physical components of this system: the telomere itself and telomerase. Mutating the template sequence of telomerase RNA caused various phenotypes: (1) mutating specific residues in the ciliate Tetrahymena and two yeasts showed that they are required for critical aspects of telomerase action; (2) certain mutated telomeric sequences caused a previously unreported phenotype, i.e. a strong anaphase block in Tetrahymena micronuclei; and (3) certain template mutations in the telomerase RNA gene of the yeast Kluyveromyces lactis led to unregulated telomere elongation, which in some cases was directly related to loss of binding to K. lactis Rap1p. Using K. lactis carrying alterations in the genes for Rap1p and other silencing components, we proposed a general model for telomere length homeostasis: namely, that the structure and DNA length of the DNA-protein complex that comprises the telomere are key determinants of telomerase access, and hence the frequency of action of telomerase, at the telomere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信