胚胎大鼠齿状回外植体突触形成及神经元类型的形态分化。

M Werner, H Hatt, K Gottmann
{"title":"胚胎大鼠齿状回外植体突触形成及神经元类型的形态分化。","authors":"M Werner,&nbsp;H Hatt,&nbsp;K Gottmann","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cultured explants obtained from the dentate gyrus of rat embryos (embryonic day 19-20) were used to investigate synapse formation and morphological differentiation of neuron types in the absence of extrinsic afferents. Synaptogenesis was studied by whole-cell recordings of postsynaptic currents and by ultrastructural analysis. Neurons were visualized using Lucifer Yellow filling or staining with DiI. In short-term (3-5 days) cultured explants postsynaptic currents were rarely evoked by extracellular stimulation and synapses were almost completely absent at the ultrastructural level. After 6-10 days in vitro, the incidence of evoking postsynaptic currents mediated by glutamate and GABA(A) receptors was strongly increased. At the ultrastructural level, the density of synapses increased more than 20-fold. These results demonstrate de novo formation of synapses in cultured embryonic dentate gyrus explants. Neuron types could be discriminated by their dendritic arborizations and by their electrophysiological properties. After 6-10 days in vitro, mossy-like cells exhibited 3-4 primary dendrites branching in a characteristic pattern and showed moderate spike-frequency adaptation. Application of serotonin (5-HT) to cultured explants elicited GABA(A)-receptor-mediated postsynaptic currents in mossy-like cells, indicating synaptic GABA release from local interneurons. Comparison to 5-HT evoked GABA release in mossy cells in age-matched, acute slices revealed only slight quantitative differences. In contrast to mossy cells, granule cells showing several primary dendrites originating at one cell pole were almost completely absent in cultured explants, suggesting an involvement of extrinsic afferents in the differentiation of granule cells.</p>","PeriodicalId":9057,"journal":{"name":"Brain research. Developmental brain research","volume":"105 1","pages":"9-23"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synapse formation and morphological differentiation of neuron types in embryonic rat dentate gyrus explants in vitro.\",\"authors\":\"M Werner,&nbsp;H Hatt,&nbsp;K Gottmann\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cultured explants obtained from the dentate gyrus of rat embryos (embryonic day 19-20) were used to investigate synapse formation and morphological differentiation of neuron types in the absence of extrinsic afferents. Synaptogenesis was studied by whole-cell recordings of postsynaptic currents and by ultrastructural analysis. Neurons were visualized using Lucifer Yellow filling or staining with DiI. In short-term (3-5 days) cultured explants postsynaptic currents were rarely evoked by extracellular stimulation and synapses were almost completely absent at the ultrastructural level. After 6-10 days in vitro, the incidence of evoking postsynaptic currents mediated by glutamate and GABA(A) receptors was strongly increased. At the ultrastructural level, the density of synapses increased more than 20-fold. These results demonstrate de novo formation of synapses in cultured embryonic dentate gyrus explants. Neuron types could be discriminated by their dendritic arborizations and by their electrophysiological properties. After 6-10 days in vitro, mossy-like cells exhibited 3-4 primary dendrites branching in a characteristic pattern and showed moderate spike-frequency adaptation. Application of serotonin (5-HT) to cultured explants elicited GABA(A)-receptor-mediated postsynaptic currents in mossy-like cells, indicating synaptic GABA release from local interneurons. Comparison to 5-HT evoked GABA release in mossy cells in age-matched, acute slices revealed only slight quantitative differences. In contrast to mossy cells, granule cells showing several primary dendrites originating at one cell pole were almost completely absent in cultured explants, suggesting an involvement of extrinsic afferents in the differentiation of granule cells.</p>\",\"PeriodicalId\":9057,\"journal\":{\"name\":\"Brain research. Developmental brain research\",\"volume\":\"105 1\",\"pages\":\"9-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain research. Developmental brain research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain research. Developmental brain research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以大鼠胚胎(胚期19-20天)齿状回为外植体,研究在无外源传入的情况下突触的形成和神经元类型的形态分化。通过突触后电流的全细胞记录和超微结构分析来研究突触发生。用路西法黄填充或DiI染色显示神经元。在短期内(3 ~ 5 d),细胞外刺激很少引起突触后电流,超微结构水平上突触几乎完全缺失。体外培养6-10天后,谷氨酸和GABA(A)受体介导的突触后电流诱发发生率明显升高。在超微结构水平上,突触密度增加了20多倍。这些结果证实了齿状回胚体中突触的新生形成。神经元的类型可以通过它们的树突分支和电生理特性来区分。在体外培养6-10天后,苔藓样细胞呈现出3-4个初生树突,并呈现出特有的分枝模式,并表现出中等的尖峰频率适应。5-羟色胺(5-HT)在苔藓样细胞中诱导GABA受体介导的突触后电流,表明GABA从局部中间神经元释放。与5-HT在年龄匹配的苔藓细胞中引起的GABA释放相比,急性切片显示只有轻微的数量差异。与苔藓细胞相比,在培养的外植体中几乎完全不存在起源于一个细胞极的具有几个初级树突的颗粒细胞,这表明在颗粒细胞的分化过程中参与了外来传入事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synapse formation and morphological differentiation of neuron types in embryonic rat dentate gyrus explants in vitro.

Cultured explants obtained from the dentate gyrus of rat embryos (embryonic day 19-20) were used to investigate synapse formation and morphological differentiation of neuron types in the absence of extrinsic afferents. Synaptogenesis was studied by whole-cell recordings of postsynaptic currents and by ultrastructural analysis. Neurons were visualized using Lucifer Yellow filling or staining with DiI. In short-term (3-5 days) cultured explants postsynaptic currents were rarely evoked by extracellular stimulation and synapses were almost completely absent at the ultrastructural level. After 6-10 days in vitro, the incidence of evoking postsynaptic currents mediated by glutamate and GABA(A) receptors was strongly increased. At the ultrastructural level, the density of synapses increased more than 20-fold. These results demonstrate de novo formation of synapses in cultured embryonic dentate gyrus explants. Neuron types could be discriminated by their dendritic arborizations and by their electrophysiological properties. After 6-10 days in vitro, mossy-like cells exhibited 3-4 primary dendrites branching in a characteristic pattern and showed moderate spike-frequency adaptation. Application of serotonin (5-HT) to cultured explants elicited GABA(A)-receptor-mediated postsynaptic currents in mossy-like cells, indicating synaptic GABA release from local interneurons. Comparison to 5-HT evoked GABA release in mossy cells in age-matched, acute slices revealed only slight quantitative differences. In contrast to mossy cells, granule cells showing several primary dendrites originating at one cell pole were almost completely absent in cultured explants, suggesting an involvement of extrinsic afferents in the differentiation of granule cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信