{"title":"小鼠腭形味觉上皮和味蕾的形态发生需要依赖bdnf的味觉神经元","authors":"Oakley, Brandemihl, Cooper, Lau, Lawton, Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The developmental absence of brain-derived neurotrophic factor (BDNF) in null mutant mice caused three interrelated defects in the vallate gustatory papilla: sparse innervation, a reduction in the area of the gustatory epithelium, and fewer taste buds. On postnatal day 7, the stunted vallate papilla of bdnf null mutant mice was 30% narrower, the trench walls 35% reduced in area, and the taste buds 75% less abundant compared with wild-type controls. Quantitative assessment of innervation density was carried out to determine if the small trench walls and shortage of taste buds could be secondary consequences of the depletion of gustatory neurons. The diminished gustatory innervation was linearly associated with a reduced trench wall area (r=+0.94) and fewer taste buds (r=+0.96). Residual taste buds were smaller than normal and were innervated by a few surviving taste neurons. We conclude that BDNF-dependent taste neurons contribute to the morphogenesis of lingual gustatory epithelia and are necessary for both prenatal and postnatal mammalian taste bud formation. The gustatory system provides a conspicuous example of impaired sense organ morphogenesis that is secondary to sensory neuron depletion by neurotrophin gene null mutation.</p>","PeriodicalId":9057,"journal":{"name":"Brain research. Developmental brain research","volume":"105 1","pages":"85-96"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The morphogenesis of mouse vallate gustatory epithelium and taste buds requires BDNF-dependent taste neurons\",\"authors\":\"Oakley, Brandemihl, Cooper, Lau, Lawton, Zhang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The developmental absence of brain-derived neurotrophic factor (BDNF) in null mutant mice caused three interrelated defects in the vallate gustatory papilla: sparse innervation, a reduction in the area of the gustatory epithelium, and fewer taste buds. On postnatal day 7, the stunted vallate papilla of bdnf null mutant mice was 30% narrower, the trench walls 35% reduced in area, and the taste buds 75% less abundant compared with wild-type controls. Quantitative assessment of innervation density was carried out to determine if the small trench walls and shortage of taste buds could be secondary consequences of the depletion of gustatory neurons. The diminished gustatory innervation was linearly associated with a reduced trench wall area (r=+0.94) and fewer taste buds (r=+0.96). Residual taste buds were smaller than normal and were innervated by a few surviving taste neurons. We conclude that BDNF-dependent taste neurons contribute to the morphogenesis of lingual gustatory epithelia and are necessary for both prenatal and postnatal mammalian taste bud formation. The gustatory system provides a conspicuous example of impaired sense organ morphogenesis that is secondary to sensory neuron depletion by neurotrophin gene null mutation.</p>\",\"PeriodicalId\":9057,\"journal\":{\"name\":\"Brain research. Developmental brain research\",\"volume\":\"105 1\",\"pages\":\"85-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain research. Developmental brain research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain research. Developmental brain research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The morphogenesis of mouse vallate gustatory epithelium and taste buds requires BDNF-dependent taste neurons
The developmental absence of brain-derived neurotrophic factor (BDNF) in null mutant mice caused three interrelated defects in the vallate gustatory papilla: sparse innervation, a reduction in the area of the gustatory epithelium, and fewer taste buds. On postnatal day 7, the stunted vallate papilla of bdnf null mutant mice was 30% narrower, the trench walls 35% reduced in area, and the taste buds 75% less abundant compared with wild-type controls. Quantitative assessment of innervation density was carried out to determine if the small trench walls and shortage of taste buds could be secondary consequences of the depletion of gustatory neurons. The diminished gustatory innervation was linearly associated with a reduced trench wall area (r=+0.94) and fewer taste buds (r=+0.96). Residual taste buds were smaller than normal and were innervated by a few surviving taste neurons. We conclude that BDNF-dependent taste neurons contribute to the morphogenesis of lingual gustatory epithelia and are necessary for both prenatal and postnatal mammalian taste bud formation. The gustatory system provides a conspicuous example of impaired sense organ morphogenesis that is secondary to sensory neuron depletion by neurotrophin gene null mutation.