胚胎早期体外化学环境对后续发育的影响。

D Rieger
{"title":"胚胎早期体外化学环境对后续发育的影响。","authors":"D Rieger","doi":"10.1007/978-3-642-46856-8_11","DOIUrl":null,"url":null,"abstract":"<p><p>The development of the preimplantation embryo seems morphologically very simple, and embryologists previously assumed that an embryo that developed to the blastocyst stage was fully capable of normal development after transfer to the uterus of a recipient female. This complacency was disturbed by reports that exposure of early embryos to mutagens such as methylnitrosourea led to fetal abnormalities, decreased birth rates, and decreased life-span. Even more disturbing are recent reports that culture of early embryos in supposedly benign conditions can adversely affect their subsequent development. Techniques have been developed for the production of cattle and sheep embryos by in-vitro fertilization and by cloning. Such embryos must be cultured for several days before they can be transferred, and, in some cases, this has been related to abortion, very high birthweight, physical abnormalities and peri-natal mortality of the calves and lambs. This syndrome may result from an unbalanced development of the trophoblast relative to the inner-cell mass, possibly related to the presence of serum, glucose, or ammonium in the culture medium. An analogous phenomenon has been observed in human in-vitro fertilization where babies from single pregnancies have below-normal birth-weight. There is also evidence to suggest that the in-vitro environment of the gametes before fertilization can affect subsequent embryonal and fetal development. Exposure of mouse oocytes to vitrification solutions has been shown to lead to fetal malformations, and treatment of bull sperm with glutathione improves early embryo development. The common thread in these diverse observations is that development can be affected by events that occur long before any defect is apparent. Consequently, the production of a morphologically normal embryo is no guarantee that fetal development and post-natal life will be normal. This is of immediate concern in human reproductive medicine due to the increasing use of sperm injection for fertilization, and the emergence of in-vitro oocyte maturation. Further development and application of reproductive techniques would benefit from a toxicological evaluation of risk factors and exposure limits.</p>","PeriodicalId":8353,"journal":{"name":"Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement","volume":"20 ","pages":"121-9"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Effects of the in vitro chemical environment during early embryogenesis on subsequent development.\",\"authors\":\"D Rieger\",\"doi\":\"10.1007/978-3-642-46856-8_11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of the preimplantation embryo seems morphologically very simple, and embryologists previously assumed that an embryo that developed to the blastocyst stage was fully capable of normal development after transfer to the uterus of a recipient female. This complacency was disturbed by reports that exposure of early embryos to mutagens such as methylnitrosourea led to fetal abnormalities, decreased birth rates, and decreased life-span. Even more disturbing are recent reports that culture of early embryos in supposedly benign conditions can adversely affect their subsequent development. Techniques have been developed for the production of cattle and sheep embryos by in-vitro fertilization and by cloning. Such embryos must be cultured for several days before they can be transferred, and, in some cases, this has been related to abortion, very high birthweight, physical abnormalities and peri-natal mortality of the calves and lambs. This syndrome may result from an unbalanced development of the trophoblast relative to the inner-cell mass, possibly related to the presence of serum, glucose, or ammonium in the culture medium. An analogous phenomenon has been observed in human in-vitro fertilization where babies from single pregnancies have below-normal birth-weight. There is also evidence to suggest that the in-vitro environment of the gametes before fertilization can affect subsequent embryonal and fetal development. Exposure of mouse oocytes to vitrification solutions has been shown to lead to fetal malformations, and treatment of bull sperm with glutathione improves early embryo development. The common thread in these diverse observations is that development can be affected by events that occur long before any defect is apparent. Consequently, the production of a morphologically normal embryo is no guarantee that fetal development and post-natal life will be normal. This is of immediate concern in human reproductive medicine due to the increasing use of sperm injection for fertilization, and the emergence of in-vitro oocyte maturation. Further development and application of reproductive techniques would benefit from a toxicological evaluation of risk factors and exposure limits.</p>\",\"PeriodicalId\":8353,\"journal\":{\"name\":\"Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement\",\"volume\":\"20 \",\"pages\":\"121-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-642-46856-8_11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-46856-8_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

着床前胚胎的发育在形态学上似乎非常简单,胚胎学家以前认为,胚胎发育到囊胚期后,在移植到受体女性的子宫后,完全有能力正常发育。有报道称,早期胚胎暴露于甲基亚硝基脲等诱变剂会导致胎儿畸形、出生率下降和寿命缩短,这种自满情绪受到了干扰。更令人不安的是,最近有报道称,在所谓的良性条件下培养早期胚胎可能会对其随后的发育产生不利影响。通过体外受精和克隆技术生产牛和羊胚胎的技术已经发展起来。这些胚胎必须培养数天才能移植,在某些情况下,这与流产、出生体重非常高、身体异常和犊牛和羔羊的围产期死亡率有关。这种综合征可能是由于滋养细胞相对于内细胞群发育不平衡所致,可能与培养基中血清、葡萄糖或铵的存在有关。在人类体外受精中也观察到类似的现象,单次怀孕的婴儿出生体重低于正常水平。也有证据表明,受精前配子的体外环境会影响随后的胚胎和胎儿发育。将小鼠卵母细胞暴露于玻璃化溶液中已被证明会导致胎儿畸形,而用谷胱甘肽处理公牛精子可改善早期胚胎发育。在这些不同的观察中,共同的线索是,在任何缺陷出现之前,开发可能会受到事件的影响。因此,产生一个形态正常的胚胎并不能保证胎儿发育和产后生活将是正常的。由于越来越多地使用精子注射进行受精,以及体外卵母细胞成熟的出现,这在人类生殖医学中是一个直接关注的问题。对危险因素和接触限度进行毒理学评价将有利于生殖技术的进一步发展和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of the in vitro chemical environment during early embryogenesis on subsequent development.

The development of the preimplantation embryo seems morphologically very simple, and embryologists previously assumed that an embryo that developed to the blastocyst stage was fully capable of normal development after transfer to the uterus of a recipient female. This complacency was disturbed by reports that exposure of early embryos to mutagens such as methylnitrosourea led to fetal abnormalities, decreased birth rates, and decreased life-span. Even more disturbing are recent reports that culture of early embryos in supposedly benign conditions can adversely affect their subsequent development. Techniques have been developed for the production of cattle and sheep embryos by in-vitro fertilization and by cloning. Such embryos must be cultured for several days before they can be transferred, and, in some cases, this has been related to abortion, very high birthweight, physical abnormalities and peri-natal mortality of the calves and lambs. This syndrome may result from an unbalanced development of the trophoblast relative to the inner-cell mass, possibly related to the presence of serum, glucose, or ammonium in the culture medium. An analogous phenomenon has been observed in human in-vitro fertilization where babies from single pregnancies have below-normal birth-weight. There is also evidence to suggest that the in-vitro environment of the gametes before fertilization can affect subsequent embryonal and fetal development. Exposure of mouse oocytes to vitrification solutions has been shown to lead to fetal malformations, and treatment of bull sperm with glutathione improves early embryo development. The common thread in these diverse observations is that development can be affected by events that occur long before any defect is apparent. Consequently, the production of a morphologically normal embryo is no guarantee that fetal development and post-natal life will be normal. This is of immediate concern in human reproductive medicine due to the increasing use of sperm injection for fertilization, and the emergence of in-vitro oocyte maturation. Further development and application of reproductive techniques would benefit from a toxicological evaluation of risk factors and exposure limits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信