T Licht, M Lübbert, C Martens, K J Bross, H H Fiebig, R Mertelsmann, F Herrmann
{"title":"肿瘤坏死因子- α调节多药耐药胸膜间皮瘤细胞的长春地西和阿霉素耐药。","authors":"T Licht, M Lübbert, C Martens, K J Bross, H H Fiebig, R Mertelsmann, F Herrmann","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor necrosis factor-alpha (TNF-alpha) has been shown to enhance the cytotoxicity of a variety of antineoplastic agents. To examine whether multidrug-resistant cells are targets of TNF-alpha, and whether TNF-alpha is capable of modulating chemoresistance of these cells, a pleural mesothelioma cell line (PXF1118L) and two multidrug-resistant sublines thereof were used as experimental models. Drug resistance of these cells was due to P-glycoprotein expression, as confirmed by (1) staining with a monoclonal antibody (MRK16) specific for human P-glycoprotein, (2) decreased accumulation of [3H]vinblastine that was reversed by verapamil, and (3) enhanced cytotoxicity of vindesine in the presence of verapamil. Parental and multidrug-resistant cells exhibited little but comparable sensitivity to TNF-alpha alone. Combining TNF-alpha with vindesine or, to a lesser extent, with doxorubicin, but not with cisplatin, resulted in greater cytotoxicity towards multidrug-resistant cells than seen for each compound alone, indicating a synergism. In contrast, TNF-alpha failed to modulate vindesine or doxorubicin cytotoxicity in parental cells. [3H]Vinblastine accumulation was unaffected by TNF-alpha, and chemoresistance was reduced by TNF-alpha also in the presence of verapamil (10 microM), indicating that TNF-alpha was acting in a way different from calcium-channel blockers. Though the molecular mechanism by which TNF-alpha was enhancing vindesine and doxorubicin cytotoxicity remained undefined in this study, the numbers of TNF-alpha binding sites on parental and on multidrug-resistant cells were similar, and P-glycoprotein expression was unmodulated during the entire 48 h incubation period. In conclusion, we show that TNF-alpha increases the cytotoxicity of anticancer drugs in multidrug-resistant tumor cells by a mechanism that differs from most chemosensitizing agents, including verapamil. Further studies will be needed to clarify the mechanism by which TNF-alpha synergizes with anticancer drugs.</p>","PeriodicalId":79484,"journal":{"name":"Cytokines and molecular therapy","volume":"1 2","pages":"123-32"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of vindesine and doxorubicin resistance in multidrug-resistant pleural mesothelioma cells by tumor necrosis factor-alpha.\",\"authors\":\"T Licht, M Lübbert, C Martens, K J Bross, H H Fiebig, R Mertelsmann, F Herrmann\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor necrosis factor-alpha (TNF-alpha) has been shown to enhance the cytotoxicity of a variety of antineoplastic agents. To examine whether multidrug-resistant cells are targets of TNF-alpha, and whether TNF-alpha is capable of modulating chemoresistance of these cells, a pleural mesothelioma cell line (PXF1118L) and two multidrug-resistant sublines thereof were used as experimental models. Drug resistance of these cells was due to P-glycoprotein expression, as confirmed by (1) staining with a monoclonal antibody (MRK16) specific for human P-glycoprotein, (2) decreased accumulation of [3H]vinblastine that was reversed by verapamil, and (3) enhanced cytotoxicity of vindesine in the presence of verapamil. Parental and multidrug-resistant cells exhibited little but comparable sensitivity to TNF-alpha alone. Combining TNF-alpha with vindesine or, to a lesser extent, with doxorubicin, but not with cisplatin, resulted in greater cytotoxicity towards multidrug-resistant cells than seen for each compound alone, indicating a synergism. In contrast, TNF-alpha failed to modulate vindesine or doxorubicin cytotoxicity in parental cells. [3H]Vinblastine accumulation was unaffected by TNF-alpha, and chemoresistance was reduced by TNF-alpha also in the presence of verapamil (10 microM), indicating that TNF-alpha was acting in a way different from calcium-channel blockers. Though the molecular mechanism by which TNF-alpha was enhancing vindesine and doxorubicin cytotoxicity remained undefined in this study, the numbers of TNF-alpha binding sites on parental and on multidrug-resistant cells were similar, and P-glycoprotein expression was unmodulated during the entire 48 h incubation period. In conclusion, we show that TNF-alpha increases the cytotoxicity of anticancer drugs in multidrug-resistant tumor cells by a mechanism that differs from most chemosensitizing agents, including verapamil. Further studies will be needed to clarify the mechanism by which TNF-alpha synergizes with anticancer drugs.</p>\",\"PeriodicalId\":79484,\"journal\":{\"name\":\"Cytokines and molecular therapy\",\"volume\":\"1 2\",\"pages\":\"123-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokines and molecular therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokines and molecular therapy","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulation of vindesine and doxorubicin resistance in multidrug-resistant pleural mesothelioma cells by tumor necrosis factor-alpha.
Tumor necrosis factor-alpha (TNF-alpha) has been shown to enhance the cytotoxicity of a variety of antineoplastic agents. To examine whether multidrug-resistant cells are targets of TNF-alpha, and whether TNF-alpha is capable of modulating chemoresistance of these cells, a pleural mesothelioma cell line (PXF1118L) and two multidrug-resistant sublines thereof were used as experimental models. Drug resistance of these cells was due to P-glycoprotein expression, as confirmed by (1) staining with a monoclonal antibody (MRK16) specific for human P-glycoprotein, (2) decreased accumulation of [3H]vinblastine that was reversed by verapamil, and (3) enhanced cytotoxicity of vindesine in the presence of verapamil. Parental and multidrug-resistant cells exhibited little but comparable sensitivity to TNF-alpha alone. Combining TNF-alpha with vindesine or, to a lesser extent, with doxorubicin, but not with cisplatin, resulted in greater cytotoxicity towards multidrug-resistant cells than seen for each compound alone, indicating a synergism. In contrast, TNF-alpha failed to modulate vindesine or doxorubicin cytotoxicity in parental cells. [3H]Vinblastine accumulation was unaffected by TNF-alpha, and chemoresistance was reduced by TNF-alpha also in the presence of verapamil (10 microM), indicating that TNF-alpha was acting in a way different from calcium-channel blockers. Though the molecular mechanism by which TNF-alpha was enhancing vindesine and doxorubicin cytotoxicity remained undefined in this study, the numbers of TNF-alpha binding sites on parental and on multidrug-resistant cells were similar, and P-glycoprotein expression was unmodulated during the entire 48 h incubation period. In conclusion, we show that TNF-alpha increases the cytotoxicity of anticancer drugs in multidrug-resistant tumor cells by a mechanism that differs from most chemosensitizing agents, including verapamil. Further studies will be needed to clarify the mechanism by which TNF-alpha synergizes with anticancer drugs.