{"title":"人肝性脑病伯格曼神经胶质病理的独特模式。","authors":"J J Kril, D Flowers, R F Butterworth","doi":"10.1007/BF02815130","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer type II astrocytosis is the pathological hallmark of hepatic encephalopathy. These astrocytes undergo a characteristic morphological change and, in addition, lose immunoreactivity for glial fibrillary acidic protein (GFAP). However, a previous study in the portacaval shunted rat, a model of hepatic encephalopathy, revealed increased rather than decreased GFAP immunoreactivity in Bergmann glia, a specialized group of cerebellar astrocytes. In the present study, sections of cerebellar vermis from 15 cirrhotic patients with hepatic encephalopathy and varying degrees of Alzheimer type II astrocytosis were stained using antisera to GFAP. The Bergmann glial cells did not show altered GFAP immunoreactivity compared to controls. In addition, the degree of GFAP immunoreactivity was not correlated with the degree of Alzheimer type II change nor related to the aetiology of the liver disease. These results suggest a differential response of Bergmann glia in human hepatic encephalopathy.</p>","PeriodicalId":18736,"journal":{"name":"Molecular and chemical neuropathology","volume":"31 3","pages":"279-87"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02815130","citationCount":"18","resultStr":"{\"title\":\"Distinctive pattern of Bergmann glial pathology in human hepatic encephalopathy.\",\"authors\":\"J J Kril, D Flowers, R F Butterworth\",\"doi\":\"10.1007/BF02815130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer type II astrocytosis is the pathological hallmark of hepatic encephalopathy. These astrocytes undergo a characteristic morphological change and, in addition, lose immunoreactivity for glial fibrillary acidic protein (GFAP). However, a previous study in the portacaval shunted rat, a model of hepatic encephalopathy, revealed increased rather than decreased GFAP immunoreactivity in Bergmann glia, a specialized group of cerebellar astrocytes. In the present study, sections of cerebellar vermis from 15 cirrhotic patients with hepatic encephalopathy and varying degrees of Alzheimer type II astrocytosis were stained using antisera to GFAP. The Bergmann glial cells did not show altered GFAP immunoreactivity compared to controls. In addition, the degree of GFAP immunoreactivity was not correlated with the degree of Alzheimer type II change nor related to the aetiology of the liver disease. These results suggest a differential response of Bergmann glia in human hepatic encephalopathy.</p>\",\"PeriodicalId\":18736,\"journal\":{\"name\":\"Molecular and chemical neuropathology\",\"volume\":\"31 3\",\"pages\":\"279-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF02815130\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and chemical neuropathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02815130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and chemical neuropathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02815130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distinctive pattern of Bergmann glial pathology in human hepatic encephalopathy.
Alzheimer type II astrocytosis is the pathological hallmark of hepatic encephalopathy. These astrocytes undergo a characteristic morphological change and, in addition, lose immunoreactivity for glial fibrillary acidic protein (GFAP). However, a previous study in the portacaval shunted rat, a model of hepatic encephalopathy, revealed increased rather than decreased GFAP immunoreactivity in Bergmann glia, a specialized group of cerebellar astrocytes. In the present study, sections of cerebellar vermis from 15 cirrhotic patients with hepatic encephalopathy and varying degrees of Alzheimer type II astrocytosis were stained using antisera to GFAP. The Bergmann glial cells did not show altered GFAP immunoreactivity compared to controls. In addition, the degree of GFAP immunoreactivity was not correlated with the degree of Alzheimer type II change nor related to the aetiology of the liver disease. These results suggest a differential response of Bergmann glia in human hepatic encephalopathy.