B R Zeeberg, S F Boulay, V K Sood, M R Rayeq, R A Danesh, D W McPherson, F F Knapp
{"title":"[125I]IQNP同分异构体对QNB的体内放射自显影竞争研究表明,QNB在体内具有m2毒蕈碱亚型选择性。","authors":"B R Zeeberg, S F Boulay, V K Sood, M R Rayeq, R A Danesh, D W McPherson, F F Knapp","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>(R,S)-[125I]IQNB has been used extensively in in vivo studies in rats, and has been of utility in demonstrating the in vivo subtype selectivity of nonradioactive ligands in competition studies. Because of the implications for the study of Alzheimer's disease (AD), those ligands that demonstrate m2 selectivity are of particular interest. Radiolabelled Z- and E-(-,-)-1-azabicyclo[2.2.2]oct-3-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z- and E-(-,-)-[125I]IQNP) are analogs of (R,S)-[125I]IQNB. Rat brain regional dissection studies and in vivo autoradiographic comparison of the time-courses of (R,S)-[125I]IQNB, Z-(-,-)-[125I]IQNP, and E-(-,-)-[125I]IQNP have indicated that Z- and E-(-,-)-[125I]IQNP, in general, are distributed similarly to (R,S)-[125I]IQNB. Z-(-,-)-[125I]IQNP binds to the muscarinic receptors in those brain regions enriched in the m2 subtype with approximately a two- to fivefold higher % dose/g compared with (R,S)-[125I]IQNB. Thus, as we show here autoradiographically, using QNB as the competing nonradioactive ligand in in vivo competition studies against Z-(-,-)-[125I]IQNP provides a sensitive and accurate probe for demonstrating the in vivo m2 selectivity of nonradioactive ligands.</p>","PeriodicalId":79456,"journal":{"name":"Receptors & signal transduction","volume":"7 1","pages":"45-54"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo autoradiographic competition studies of isomers of [125I]IQNP against QNB demonstrating in vivo m2 muscarinic subtype selectivity for QNB.\",\"authors\":\"B R Zeeberg, S F Boulay, V K Sood, M R Rayeq, R A Danesh, D W McPherson, F F Knapp\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>(R,S)-[125I]IQNB has been used extensively in in vivo studies in rats, and has been of utility in demonstrating the in vivo subtype selectivity of nonradioactive ligands in competition studies. Because of the implications for the study of Alzheimer's disease (AD), those ligands that demonstrate m2 selectivity are of particular interest. Radiolabelled Z- and E-(-,-)-1-azabicyclo[2.2.2]oct-3-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z- and E-(-,-)-[125I]IQNP) are analogs of (R,S)-[125I]IQNB. Rat brain regional dissection studies and in vivo autoradiographic comparison of the time-courses of (R,S)-[125I]IQNB, Z-(-,-)-[125I]IQNP, and E-(-,-)-[125I]IQNP have indicated that Z- and E-(-,-)-[125I]IQNP, in general, are distributed similarly to (R,S)-[125I]IQNB. Z-(-,-)-[125I]IQNP binds to the muscarinic receptors in those brain regions enriched in the m2 subtype with approximately a two- to fivefold higher % dose/g compared with (R,S)-[125I]IQNB. Thus, as we show here autoradiographically, using QNB as the competing nonradioactive ligand in in vivo competition studies against Z-(-,-)-[125I]IQNP provides a sensitive and accurate probe for demonstrating the in vivo m2 selectivity of nonradioactive ligands.</p>\",\"PeriodicalId\":79456,\"journal\":{\"name\":\"Receptors & signal transduction\",\"volume\":\"7 1\",\"pages\":\"45-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Receptors & signal transduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors & signal transduction","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In vivo autoradiographic competition studies of isomers of [125I]IQNP against QNB demonstrating in vivo m2 muscarinic subtype selectivity for QNB.
(R,S)-[125I]IQNB has been used extensively in in vivo studies in rats, and has been of utility in demonstrating the in vivo subtype selectivity of nonradioactive ligands in competition studies. Because of the implications for the study of Alzheimer's disease (AD), those ligands that demonstrate m2 selectivity are of particular interest. Radiolabelled Z- and E-(-,-)-1-azabicyclo[2.2.2]oct-3-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z- and E-(-,-)-[125I]IQNP) are analogs of (R,S)-[125I]IQNB. Rat brain regional dissection studies and in vivo autoradiographic comparison of the time-courses of (R,S)-[125I]IQNB, Z-(-,-)-[125I]IQNP, and E-(-,-)-[125I]IQNP have indicated that Z- and E-(-,-)-[125I]IQNP, in general, are distributed similarly to (R,S)-[125I]IQNB. Z-(-,-)-[125I]IQNP binds to the muscarinic receptors in those brain regions enriched in the m2 subtype with approximately a two- to fivefold higher % dose/g compared with (R,S)-[125I]IQNB. Thus, as we show here autoradiographically, using QNB as the competing nonradioactive ligand in in vivo competition studies against Z-(-,-)-[125I]IQNP provides a sensitive and accurate probe for demonstrating the in vivo m2 selectivity of nonradioactive ligands.