{"title":"黄体酮对大鼠创伤性脑损伤后脂质过氧化的保护作用。","authors":"R L Roof, S W Hoffman, D G Stein","doi":"10.1007/BF02815156","DOIUrl":null,"url":null,"abstract":"<p><p>The gonadal hormone, progesterone, has been shown to have neuroprotective effects in injured nervous system, including the severity of postinjury cerebral edema. Progesterone's attenuation of edema is accompanied by a sparing of neurons from secondary neuronal death and with improvements in cognitive outcome. In addition, we recently reported that postinjury blood-brain barrier (BBB) leakage, as measured by albumin immunostaining, was significantly lower in progesterone treated than in nontreated rats, supporting a possible protective action of progesterone on the BBB. Because lipid membrane peroxidation is a major contributor to BBB breakdown, we hypothesized that progesterone limits this free radical-induced damage. An antioxidant action, neuroprotective in itself, would also account for progesterone's effects on the BBB, edema, and cell survival after traumatic brain injury. To test progesterone's possible antiperoxidation effect, we compared brain levels of 8-isoprostaglandin F2 alpha (8-isoPGF2 alpha), a marker of lipid peroxidation, 24, 48, and 72 h after cortical contusion in male rats treated with either progesterone or the oil vehicle. The brains of progesterone treated rats contained approximately one-third of the 8-isoPGF2 alpha found in oil-treated rats. These data suggest progesterone has antioxidant effects and support its potential as a treatment for brain injury.</p>","PeriodicalId":18736,"journal":{"name":"Molecular and chemical neuropathology","volume":"31 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02815156","citationCount":"306","resultStr":"{\"title\":\"Progesterone protects against lipid peroxidation following traumatic brain injury in rats.\",\"authors\":\"R L Roof, S W Hoffman, D G Stein\",\"doi\":\"10.1007/BF02815156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gonadal hormone, progesterone, has been shown to have neuroprotective effects in injured nervous system, including the severity of postinjury cerebral edema. Progesterone's attenuation of edema is accompanied by a sparing of neurons from secondary neuronal death and with improvements in cognitive outcome. In addition, we recently reported that postinjury blood-brain barrier (BBB) leakage, as measured by albumin immunostaining, was significantly lower in progesterone treated than in nontreated rats, supporting a possible protective action of progesterone on the BBB. Because lipid membrane peroxidation is a major contributor to BBB breakdown, we hypothesized that progesterone limits this free radical-induced damage. An antioxidant action, neuroprotective in itself, would also account for progesterone's effects on the BBB, edema, and cell survival after traumatic brain injury. To test progesterone's possible antiperoxidation effect, we compared brain levels of 8-isoprostaglandin F2 alpha (8-isoPGF2 alpha), a marker of lipid peroxidation, 24, 48, and 72 h after cortical contusion in male rats treated with either progesterone or the oil vehicle. The brains of progesterone treated rats contained approximately one-third of the 8-isoPGF2 alpha found in oil-treated rats. These data suggest progesterone has antioxidant effects and support its potential as a treatment for brain injury.</p>\",\"PeriodicalId\":18736,\"journal\":{\"name\":\"Molecular and chemical neuropathology\",\"volume\":\"31 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF02815156\",\"citationCount\":\"306\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and chemical neuropathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02815156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and chemical neuropathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02815156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Progesterone protects against lipid peroxidation following traumatic brain injury in rats.
The gonadal hormone, progesterone, has been shown to have neuroprotective effects in injured nervous system, including the severity of postinjury cerebral edema. Progesterone's attenuation of edema is accompanied by a sparing of neurons from secondary neuronal death and with improvements in cognitive outcome. In addition, we recently reported that postinjury blood-brain barrier (BBB) leakage, as measured by albumin immunostaining, was significantly lower in progesterone treated than in nontreated rats, supporting a possible protective action of progesterone on the BBB. Because lipid membrane peroxidation is a major contributor to BBB breakdown, we hypothesized that progesterone limits this free radical-induced damage. An antioxidant action, neuroprotective in itself, would also account for progesterone's effects on the BBB, edema, and cell survival after traumatic brain injury. To test progesterone's possible antiperoxidation effect, we compared brain levels of 8-isoprostaglandin F2 alpha (8-isoPGF2 alpha), a marker of lipid peroxidation, 24, 48, and 72 h after cortical contusion in male rats treated with either progesterone or the oil vehicle. The brains of progesterone treated rats contained approximately one-third of the 8-isoPGF2 alpha found in oil-treated rats. These data suggest progesterone has antioxidant effects and support its potential as a treatment for brain injury.