{"title":"鸟苷5′- o -(3-硫代三磷酸)和阳离子调节褪黑激素受体,褪黑激素抑制脊髓中环AMP的产生。","authors":"Q Wan, M X Liao, C S Pang, S F Pang, G M Brown","doi":"10.1159/000109111","DOIUrl":null,"url":null,"abstract":"<p><p>Effects of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and cations on 2-[125I]iodomelatonin binding were investigated in membrane preparations of the chicken spinal cord. At concentrations of 10 and 50 mumol/l, GTP gamma S dose-dependently increased (p < 0.05) the equilibrium dissociation constant (Kd) and depressed (p < 0.05) the maximum number of binding sites (Bmax). Na+ at a concentration of 125 mmol/l significantly increased (p < 0.05) the Kd and decreased (p < 0.05) the Bmax, and Mg2+ (2.5 mmol/l) significantly increased (p < 0.05) the Bmax without changes in Kd. In addition, Na+ and Mg2+ affected the interactions of GTP gamma S with melatonin receptors. In the spinal cord explants, melatonin (10 nmol/l) attenuated forskolin-stimulated cyclic AMP production by 53.1%, and preincubation with pertussis toxin abolished this effect of melatonin. These results suggest that the melatonin receptors in the chicken spinal cord are linked to its second messenger via a pertussis-toxin-sensitive guanine-nucleotide-binding protein, and that cations modulate these receptors. Our studies further support a previous hypothesis that melatonin exerts a direct action on spinal cord functions.</p>","PeriodicalId":9265,"journal":{"name":"Biological signals","volume":"6 2","pages":"67-76"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000109111","citationCount":"4","resultStr":"{\"title\":\"Guanosine 5'-O-(3-thiotriphosphate) and cations regulate melatonin receptors, and melatonin inhibits cyclic AMP production in the spinal cord.\",\"authors\":\"Q Wan, M X Liao, C S Pang, S F Pang, G M Brown\",\"doi\":\"10.1159/000109111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effects of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and cations on 2-[125I]iodomelatonin binding were investigated in membrane preparations of the chicken spinal cord. At concentrations of 10 and 50 mumol/l, GTP gamma S dose-dependently increased (p < 0.05) the equilibrium dissociation constant (Kd) and depressed (p < 0.05) the maximum number of binding sites (Bmax). Na+ at a concentration of 125 mmol/l significantly increased (p < 0.05) the Kd and decreased (p < 0.05) the Bmax, and Mg2+ (2.5 mmol/l) significantly increased (p < 0.05) the Bmax without changes in Kd. In addition, Na+ and Mg2+ affected the interactions of GTP gamma S with melatonin receptors. In the spinal cord explants, melatonin (10 nmol/l) attenuated forskolin-stimulated cyclic AMP production by 53.1%, and preincubation with pertussis toxin abolished this effect of melatonin. These results suggest that the melatonin receptors in the chicken spinal cord are linked to its second messenger via a pertussis-toxin-sensitive guanine-nucleotide-binding protein, and that cations modulate these receptors. Our studies further support a previous hypothesis that melatonin exerts a direct action on spinal cord functions.</p>\",\"PeriodicalId\":9265,\"journal\":{\"name\":\"Biological signals\",\"volume\":\"6 2\",\"pages\":\"67-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000109111\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological signals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000109111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000109111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Guanosine 5'-O-(3-thiotriphosphate) and cations regulate melatonin receptors, and melatonin inhibits cyclic AMP production in the spinal cord.
Effects of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and cations on 2-[125I]iodomelatonin binding were investigated in membrane preparations of the chicken spinal cord. At concentrations of 10 and 50 mumol/l, GTP gamma S dose-dependently increased (p < 0.05) the equilibrium dissociation constant (Kd) and depressed (p < 0.05) the maximum number of binding sites (Bmax). Na+ at a concentration of 125 mmol/l significantly increased (p < 0.05) the Kd and decreased (p < 0.05) the Bmax, and Mg2+ (2.5 mmol/l) significantly increased (p < 0.05) the Bmax without changes in Kd. In addition, Na+ and Mg2+ affected the interactions of GTP gamma S with melatonin receptors. In the spinal cord explants, melatonin (10 nmol/l) attenuated forskolin-stimulated cyclic AMP production by 53.1%, and preincubation with pertussis toxin abolished this effect of melatonin. These results suggest that the melatonin receptors in the chicken spinal cord are linked to its second messenger via a pertussis-toxin-sensitive guanine-nucleotide-binding protein, and that cations modulate these receptors. Our studies further support a previous hypothesis that melatonin exerts a direct action on spinal cord functions.