{"title":"静脉麻醉:作用于某些细胞部位。","authors":"M Dzoljic, A W Gelb","doi":"10.1097/00003643-199705001-00002","DOIUrl":null,"url":null,"abstract":"<p><p>Intravenous anaesthetics have diverse effects on neurones within the central nervous system. Only those that occur at clinical concentrations are likely to be relevant. The dominant effect of many agents is the potentiation of the inhibitory neurotransmitter gamma amino butyric acid (GABA) by various mechanisms while inhibiting the effects of excitatory transmitters seems to be less dominant, except for ketamine.</p>","PeriodicalId":11873,"journal":{"name":"European journal of anaesthesiology. Supplement","volume":"15 ","pages":"3-7"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Intravenous anaesthetics: some cellular sites of action.\",\"authors\":\"M Dzoljic, A W Gelb\",\"doi\":\"10.1097/00003643-199705001-00002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intravenous anaesthetics have diverse effects on neurones within the central nervous system. Only those that occur at clinical concentrations are likely to be relevant. The dominant effect of many agents is the potentiation of the inhibitory neurotransmitter gamma amino butyric acid (GABA) by various mechanisms while inhibiting the effects of excitatory transmitters seems to be less dominant, except for ketamine.</p>\",\"PeriodicalId\":11873,\"journal\":{\"name\":\"European journal of anaesthesiology. Supplement\",\"volume\":\"15 \",\"pages\":\"3-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of anaesthesiology. Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/00003643-199705001-00002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of anaesthesiology. Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/00003643-199705001-00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intravenous anaesthetics: some cellular sites of action.
Intravenous anaesthetics have diverse effects on neurones within the central nervous system. Only those that occur at clinical concentrations are likely to be relevant. The dominant effect of many agents is the potentiation of the inhibitory neurotransmitter gamma amino butyric acid (GABA) by various mechanisms while inhibiting the effects of excitatory transmitters seems to be less dominant, except for ketamine.