为什么自旋= 1,2种在正常情况下没有电子顺磁共振信号:可能在频率接近D值时通过电子顺磁共振检测?

Hanqing Wu
{"title":"为什么自旋= 1,2种在正常情况下没有电子顺磁共振信号:可能在频率接近D值时通过电子顺磁共振检测?","authors":"Hanqing Wu","doi":"10.1016/S0263-7855(97)00007-6","DOIUrl":null,"url":null,"abstract":"<div><p>A universal EPR simulation program has been created by the author, which is based on the following spin Hamiltonian equation: <span><math><mtext>H = gβB · S + D{S</mtext><msub><mi></mi><mn>z</mn></msub><msup><mi></mi><mn>2</mn></msup><mtext> − </mtext><mtext>S(S + 1)</mtext><mtext>3</mtext><mtext>} + E(S</mtext><msub><mi></mi><mn>x</mn></msub><msup><mi></mi><mn>2</mn></msup><mtext> − S</mtext><msub><mi></mi><mn>y</mn></msub><msup><mi></mi><mn>2</mn></msup><mtext>)</mtext></math></span> where <em>D</em> and <em>e</em> are the axial and rhombic zero-field splitting parameters, respectively. The program can be used for simulation of EPR spectra with half-integer electronic spin (<span><math><mtext>S = </mtext><mtext>n</mtext><mtext>2</mtext></math></span>, <em>n</em> = 3, 5, 7, 9) systems. In this article, the integer spin (<span><math><mtext>S = </mtext><mtext>n</mtext><mtext>2</mtext></math></span>, <em>n</em> = 2, 4) systems are also considered. The EPR simulation results show that when <em>D</em> &gt; frequency, no EPR signal can be seen from EPR simulation; when <em>D</em> ≈ frequency, whichever X/Q/W-band is used, the EPR signal can be seen on the basis of the simulated EPR results presented.</p></div>","PeriodicalId":73837,"journal":{"name":"Journal of molecular graphics","volume":"14 6","pages":"Pages 328-330"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0263-7855(97)00007-6","citationCount":"2","resultStr":"{\"title\":\"Why spin = 1, 2 species have no electron paramagnetic resonance signal under normal conditions: Possible detection by electron paramagnetic resonance at frequency close to D value?\",\"authors\":\"Hanqing Wu\",\"doi\":\"10.1016/S0263-7855(97)00007-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A universal EPR simulation program has been created by the author, which is based on the following spin Hamiltonian equation: <span><math><mtext>H = gβB · S + D{S</mtext><msub><mi></mi><mn>z</mn></msub><msup><mi></mi><mn>2</mn></msup><mtext> − </mtext><mtext>S(S + 1)</mtext><mtext>3</mtext><mtext>} + E(S</mtext><msub><mi></mi><mn>x</mn></msub><msup><mi></mi><mn>2</mn></msup><mtext> − S</mtext><msub><mi></mi><mn>y</mn></msub><msup><mi></mi><mn>2</mn></msup><mtext>)</mtext></math></span> where <em>D</em> and <em>e</em> are the axial and rhombic zero-field splitting parameters, respectively. The program can be used for simulation of EPR spectra with half-integer electronic spin (<span><math><mtext>S = </mtext><mtext>n</mtext><mtext>2</mtext></math></span>, <em>n</em> = 3, 5, 7, 9) systems. In this article, the integer spin (<span><math><mtext>S = </mtext><mtext>n</mtext><mtext>2</mtext></math></span>, <em>n</em> = 2, 4) systems are also considered. The EPR simulation results show that when <em>D</em> &gt; frequency, no EPR signal can be seen from EPR simulation; when <em>D</em> ≈ frequency, whichever X/Q/W-band is used, the EPR signal can be seen on the basis of the simulated EPR results presented.</p></div>\",\"PeriodicalId\":73837,\"journal\":{\"name\":\"Journal of molecular graphics\",\"volume\":\"14 6\",\"pages\":\"Pages 328-330\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0263-7855(97)00007-6\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263785597000076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263785597000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

根据自旋哈密顿方程H = gβB·S + D{Sz2−S(S + 1)3} + E(Sx2−Sy2),建立了通用的EPR仿真程序,其中D和E分别为轴向零场分裂参数和斜向零场分裂参数。该程序可用于半整数电子自旋(S = n2, n = 3,5,7,9)体系的EPR谱模拟。本文还考虑了整数自旋(S = n2, n = 2,4)系统。EPR仿真结果表明,当D >频率,从EPR仿真中看不到EPR信号;当D≈frequency时,取任意X/Q/ w波段,根据所给出的模拟EPR结果可以得到EPR信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why spin = 1, 2 species have no electron paramagnetic resonance signal under normal conditions: Possible detection by electron paramagnetic resonance at frequency close to D value?

A universal EPR simulation program has been created by the author, which is based on the following spin Hamiltonian equation: H = gβB · S + D{Sz2S(S + 1)3} + E(Sx2 − Sy2) where D and e are the axial and rhombic zero-field splitting parameters, respectively. The program can be used for simulation of EPR spectra with half-integer electronic spin (S = n2, n = 3, 5, 7, 9) systems. In this article, the integer spin (S = n2, n = 2, 4) systems are also considered. The EPR simulation results show that when D > frequency, no EPR signal can be seen from EPR simulation; when D ≈ frequency, whichever X/Q/W-band is used, the EPR signal can be seen on the basis of the simulated EPR results presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信