H Xue, N Tatsumi, K Park, M Shimizu, T Kyojima, Y Sumiya, S Kawabata, N Maeda, D Sakano
{"title":"利用多层神经网络作为分类器搜索危险因素。","authors":"H Xue, N Tatsumi, K Park, M Shimizu, T Kyojima, Y Sumiya, S Kawabata, N Maeda, D Sakano","doi":"10.3109/14639239609025360","DOIUrl":null,"url":null,"abstract":"<p><p>A method to determine risk factors for particular outcomes using trained multilayer neural networks is proposed. The basic idea is to measure the partial differentials of the output with respect to input variables of the network. Differentiable activation functions and continuity of input variables is assumed.</p>","PeriodicalId":76132,"journal":{"name":"Medical informatics = Medecine et informatique","volume":"21 3","pages":"229-32"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/14639239609025360","citationCount":"2","resultStr":"{\"title\":\"Searching for risk factors using multilayer neural network as a classifier.\",\"authors\":\"H Xue, N Tatsumi, K Park, M Shimizu, T Kyojima, Y Sumiya, S Kawabata, N Maeda, D Sakano\",\"doi\":\"10.3109/14639239609025360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A method to determine risk factors for particular outcomes using trained multilayer neural networks is proposed. The basic idea is to measure the partial differentials of the output with respect to input variables of the network. Differentiable activation functions and continuity of input variables is assumed.</p>\",\"PeriodicalId\":76132,\"journal\":{\"name\":\"Medical informatics = Medecine et informatique\",\"volume\":\"21 3\",\"pages\":\"229-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/14639239609025360\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical informatics = Medecine et informatique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/14639239609025360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical informatics = Medecine et informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/14639239609025360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Searching for risk factors using multilayer neural network as a classifier.
A method to determine risk factors for particular outcomes using trained multilayer neural networks is proposed. The basic idea is to measure the partial differentials of the output with respect to input variables of the network. Differentiable activation functions and continuity of input variables is assumed.