{"title":"植物基因组结构的比较分析。","authors":"J S Heslop-Harrison","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many genes are similar in most plants and it is clear that the ordering of genes is highly conserved across wide taxonomic groupings. Repetitive DNA, consisting of sequence motifs between 2 and 10,000 base pairs long, repeated many hundreds or thousands of times in the genome, represents the majority of most plant genomes and defines some of the differences between species. Some sequences are highly conserved in many species, while other sequences show species or even chromosome specificity. Different types of sequences have markedly contrasting genomic distributions; even among tandem repeats, some are sub-terminal, some paracentromeric and others intercalary. The reasons for these different distributions are largely unknown, and mechanisms of homogenization, dispersion and amplifications are the subject of much speculation. Aspects of plant genome architecture-the organization of repetitive and single-copy DNA sequences along the chromosomes, and the positioning of those sequences within the nucleus at interphase-have important consequences for plant genetics. Models of large scale genome organization may be useful in learning the function of different components of the genome, in evolutionary studies and in plant breeding.</p>","PeriodicalId":22134,"journal":{"name":"Symposia of the Society for Experimental Biology","volume":"50 ","pages":"17-23"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of plant genome architecture.\",\"authors\":\"J S Heslop-Harrison\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many genes are similar in most plants and it is clear that the ordering of genes is highly conserved across wide taxonomic groupings. Repetitive DNA, consisting of sequence motifs between 2 and 10,000 base pairs long, repeated many hundreds or thousands of times in the genome, represents the majority of most plant genomes and defines some of the differences between species. Some sequences are highly conserved in many species, while other sequences show species or even chromosome specificity. Different types of sequences have markedly contrasting genomic distributions; even among tandem repeats, some are sub-terminal, some paracentromeric and others intercalary. The reasons for these different distributions are largely unknown, and mechanisms of homogenization, dispersion and amplifications are the subject of much speculation. Aspects of plant genome architecture-the organization of repetitive and single-copy DNA sequences along the chromosomes, and the positioning of those sequences within the nucleus at interphase-have important consequences for plant genetics. Models of large scale genome organization may be useful in learning the function of different components of the genome, in evolutionary studies and in plant breeding.</p>\",\"PeriodicalId\":22134,\"journal\":{\"name\":\"Symposia of the Society for Experimental Biology\",\"volume\":\"50 \",\"pages\":\"17-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposia of the Society for Experimental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposia of the Society for Experimental Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative analysis of plant genome architecture.
Many genes are similar in most plants and it is clear that the ordering of genes is highly conserved across wide taxonomic groupings. Repetitive DNA, consisting of sequence motifs between 2 and 10,000 base pairs long, repeated many hundreds or thousands of times in the genome, represents the majority of most plant genomes and defines some of the differences between species. Some sequences are highly conserved in many species, while other sequences show species or even chromosome specificity. Different types of sequences have markedly contrasting genomic distributions; even among tandem repeats, some are sub-terminal, some paracentromeric and others intercalary. The reasons for these different distributions are largely unknown, and mechanisms of homogenization, dispersion and amplifications are the subject of much speculation. Aspects of plant genome architecture-the organization of repetitive and single-copy DNA sequences along the chromosomes, and the positioning of those sequences within the nucleus at interphase-have important consequences for plant genetics. Models of large scale genome organization may be useful in learning the function of different components of the genome, in evolutionary studies and in plant breeding.