{"title":"吲哚美辛对绵羊卵巢的不同影响:前列腺素生物合成、细胞内钙、细胞凋亡和排卵","authors":"W.J. Murdoch","doi":"10.1016/S0090-6980(96)00127-X","DOIUrl":null,"url":null,"abstract":"<div><p>Cells of the apical wall of the dominant follicle and contiguous ovarian surface epithelium become apoptotic with the approach of ovulation in the sheep. It was hypothesized that indomethacin, an established inhibitor of prostaglandin biosynthesis and ovulation, would protect apical ovarian cells from programmed death. The anovulatory potencies of two systemic doses of indomethacin (200 and 800 mg) were tested in gonadotropin-stimulated ewes. A complete blockade of ovulation occurred at the higher dose of indomethacin. Ovulation was not inhibited by 200 mg indomethacin. Both doses of drug suppressed follicular prostaglandin production below pregonadotropin levels. Immunofluorescence detection of digoxigenin end-labeled (fragmented) DNA was used as a marker of apoptosis among ovarian surface epithelial and granulosa cells recovered from the apical hemisphere of preovulatory ovine follicles. Cellular DNA fragmentation was averted in animals given 800 mg indomethacin, whereas apoptosis ensued after 200 mg. A sustained increase in cytosolic calcium is generally a prerequisite to apoptotic DNA fragmentation and cell death. Indeed, intracellular calcium, detected by fluorescence of fura-2, was elevated in ovarian cells of animals destined to ovulate (controls, 200 mg indomethacin) in comparison to (safeguarded) cells of anovulatory ewes (800 mg indomethacin). These observations provide circumstantial evidence that apical ovarian cell degeneration by calcium-mediated apoptosis is a determinant of follicular instability and rupture, but that these events are unrelated to the gonadotropin-induced rise in prostanoid production characteristic of preovulatory follicles.</p></div>","PeriodicalId":20653,"journal":{"name":"Prostaglandins","volume":"52 6","pages":"Pages 497-506"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0090-6980(96)00127-X","citationCount":"27","resultStr":"{\"title\":\"Differential effects of indomethacin on the sheep ovary: Prostaglandin biosynthesis, intracellular calcium, apoptosis, and ovulation\",\"authors\":\"W.J. Murdoch\",\"doi\":\"10.1016/S0090-6980(96)00127-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cells of the apical wall of the dominant follicle and contiguous ovarian surface epithelium become apoptotic with the approach of ovulation in the sheep. It was hypothesized that indomethacin, an established inhibitor of prostaglandin biosynthesis and ovulation, would protect apical ovarian cells from programmed death. The anovulatory potencies of two systemic doses of indomethacin (200 and 800 mg) were tested in gonadotropin-stimulated ewes. A complete blockade of ovulation occurred at the higher dose of indomethacin. Ovulation was not inhibited by 200 mg indomethacin. Both doses of drug suppressed follicular prostaglandin production below pregonadotropin levels. Immunofluorescence detection of digoxigenin end-labeled (fragmented) DNA was used as a marker of apoptosis among ovarian surface epithelial and granulosa cells recovered from the apical hemisphere of preovulatory ovine follicles. Cellular DNA fragmentation was averted in animals given 800 mg indomethacin, whereas apoptosis ensued after 200 mg. A sustained increase in cytosolic calcium is generally a prerequisite to apoptotic DNA fragmentation and cell death. Indeed, intracellular calcium, detected by fluorescence of fura-2, was elevated in ovarian cells of animals destined to ovulate (controls, 200 mg indomethacin) in comparison to (safeguarded) cells of anovulatory ewes (800 mg indomethacin). These observations provide circumstantial evidence that apical ovarian cell degeneration by calcium-mediated apoptosis is a determinant of follicular instability and rupture, but that these events are unrelated to the gonadotropin-induced rise in prostanoid production characteristic of preovulatory follicles.</p></div>\",\"PeriodicalId\":20653,\"journal\":{\"name\":\"Prostaglandins\",\"volume\":\"52 6\",\"pages\":\"Pages 497-506\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0090-6980(96)00127-X\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009069809600127X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009069809600127X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential effects of indomethacin on the sheep ovary: Prostaglandin biosynthesis, intracellular calcium, apoptosis, and ovulation
Cells of the apical wall of the dominant follicle and contiguous ovarian surface epithelium become apoptotic with the approach of ovulation in the sheep. It was hypothesized that indomethacin, an established inhibitor of prostaglandin biosynthesis and ovulation, would protect apical ovarian cells from programmed death. The anovulatory potencies of two systemic doses of indomethacin (200 and 800 mg) were tested in gonadotropin-stimulated ewes. A complete blockade of ovulation occurred at the higher dose of indomethacin. Ovulation was not inhibited by 200 mg indomethacin. Both doses of drug suppressed follicular prostaglandin production below pregonadotropin levels. Immunofluorescence detection of digoxigenin end-labeled (fragmented) DNA was used as a marker of apoptosis among ovarian surface epithelial and granulosa cells recovered from the apical hemisphere of preovulatory ovine follicles. Cellular DNA fragmentation was averted in animals given 800 mg indomethacin, whereas apoptosis ensued after 200 mg. A sustained increase in cytosolic calcium is generally a prerequisite to apoptotic DNA fragmentation and cell death. Indeed, intracellular calcium, detected by fluorescence of fura-2, was elevated in ovarian cells of animals destined to ovulate (controls, 200 mg indomethacin) in comparison to (safeguarded) cells of anovulatory ewes (800 mg indomethacin). These observations provide circumstantial evidence that apical ovarian cell degeneration by calcium-mediated apoptosis is a determinant of follicular instability and rupture, but that these events are unrelated to the gonadotropin-induced rise in prostanoid production characteristic of preovulatory follicles.