二维材料在太赫兹光电器件中的应用

IF 12.8 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zhe Shi , He Zhang , Karim Khan , Rui Cao , Ye Zhang , Chunyang Ma , Ayesha Khan Tareen , Yuanfei Jiang , Mingxing Jin , Han Zhang
{"title":"二维材料在太赫兹光电器件中的应用","authors":"Zhe Shi ,&nbsp;He Zhang ,&nbsp;Karim Khan ,&nbsp;Rui Cao ,&nbsp;Ye Zhang ,&nbsp;Chunyang Ma ,&nbsp;Ayesha Khan Tareen ,&nbsp;Yuanfei Jiang ,&nbsp;Mingxing Jin ,&nbsp;Han Zhang","doi":"10.1016/j.jphotochemrev.2021.100473","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional (2D) materials have become a worldwide hot topic due to their fascinating properties, including high carrier mobility, tunable bandgap, ultra-broadband optical absorption and response. The versatility of 2D materials enable it hold great potential to achieve high performance Terahertz (THz) optoelectronic devices. However, the THz radiation, range from infrared to microwave, known as the THz gap, much less investigated than that of other electromagnetic wave. Motivated by this lack of knowledge, we reviewed the recent advances of research into 2D materials based THz optoelectronic devices. Firstly, we introduced the background and motivation of this review. Then, the suitable 2D material candidates are exhibited, followed by a comprehensive review of their applications in THz generation devices, modulator, THz shielding, and photodetectors. Finally, the challenges and further development directions are concluded. We believe that some milestone investigations of 2D materials based THz optoelectronic devices will emerge soon, which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":null,"pages":null},"PeriodicalIF":12.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Two-dimensional materials toward Terahertz optoelectronic device applications\",\"authors\":\"Zhe Shi ,&nbsp;He Zhang ,&nbsp;Karim Khan ,&nbsp;Rui Cao ,&nbsp;Ye Zhang ,&nbsp;Chunyang Ma ,&nbsp;Ayesha Khan Tareen ,&nbsp;Yuanfei Jiang ,&nbsp;Mingxing Jin ,&nbsp;Han Zhang\",\"doi\":\"10.1016/j.jphotochemrev.2021.100473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional (2D) materials have become a worldwide hot topic due to their fascinating properties, including high carrier mobility, tunable bandgap, ultra-broadband optical absorption and response. The versatility of 2D materials enable it hold great potential to achieve high performance Terahertz (THz) optoelectronic devices. However, the THz radiation, range from infrared to microwave, known as the THz gap, much less investigated than that of other electromagnetic wave. Motivated by this lack of knowledge, we reviewed the recent advances of research into 2D materials based THz optoelectronic devices. Firstly, we introduced the background and motivation of this review. Then, the suitable 2D material candidates are exhibited, followed by a comprehensive review of their applications in THz generation devices, modulator, THz shielding, and photodetectors. Finally, the challenges and further development directions are concluded. We believe that some milestone investigations of 2D materials based THz optoelectronic devices will emerge soon, which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.</p></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389556721000721\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556721000721","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 27

摘要

二维(2D)材料由于其具有高载流子迁移率、可调带隙、超宽带光吸收和响应等令人着迷的特性而成为世界范围内的热门话题。二维材料的多功能性使其具有实现高性能太赫兹(THz)光电器件的巨大潜力。然而,太赫兹辐射的范围从红外到微波,被称为太赫兹间隙,比其他电磁波的研究要少得多。由于这种知识的缺乏,我们回顾了基于二维材料的太赫兹光电器件的最新研究进展。首先,我们介绍了本文的研究背景和动机。然后,展示了合适的2D候选材料,然后全面回顾了它们在太赫兹产生器件、调制器、太赫兹屏蔽和光电探测器中的应用。最后,总结了面临的挑战和进一步的发展方向。我们相信,一些基于二维材料的太赫兹光电子器件的里程碑式研究将很快出现,这将为基于二维材料的纳米器件的商业化带来巨大的工业启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-dimensional materials toward Terahertz optoelectronic device applications

Two-dimensional (2D) materials have become a worldwide hot topic due to their fascinating properties, including high carrier mobility, tunable bandgap, ultra-broadband optical absorption and response. The versatility of 2D materials enable it hold great potential to achieve high performance Terahertz (THz) optoelectronic devices. However, the THz radiation, range from infrared to microwave, known as the THz gap, much less investigated than that of other electromagnetic wave. Motivated by this lack of knowledge, we reviewed the recent advances of research into 2D materials based THz optoelectronic devices. Firstly, we introduced the background and motivation of this review. Then, the suitable 2D material candidates are exhibited, followed by a comprehensive review of their applications in THz generation devices, modulator, THz shielding, and photodetectors. Finally, the challenges and further development directions are concluded. We believe that some milestone investigations of 2D materials based THz optoelectronic devices will emerge soon, which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.90
自引率
0.70%
发文量
36
审稿时长
47 days
期刊介绍: The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信