Chino Otsuka, Kunihiko F. Miura, Motoi Ishidate Jr.
{"title":"乙酰转移酶在诱导2-氨基-1-甲基-6-苯基咪唑[4,5-b]吡啶(PhIP)在培养的中国仓鼠细胞中细胞遗传学效应中的可能作用","authors":"Chino Otsuka, Kunihiko F. Miura, Motoi Ishidate Jr.","doi":"10.1016/S0165-1218(96)90091-9","DOIUrl":null,"url":null,"abstract":"<div><p>When metabolically activated, 2-amino-1-methyl-6-phenylimidazo[4,5-<em>b</em>]pyridine (PhIP), a heterocyclic amine isolated from cooked food, is clastogenic in cultured Chinese hamster and human cells. Secondary metabolites of PhIP are formed via acetyltransferase (AT) and sulfotransferase (ST) activity; however, which is responsible for its clastogenic effect is unknown. We addressed this question. We used a parental Chinese hamster lung cell line and three sublines transfected with different AT genes to test the clastogenic (i.e., micronucleus-inducing) effects of metabolically activated PhIP and 7,12-dimethylbenz[<em>a</em>]anthracene (DMBA) in the presence and absence of pentachlorophenol (PCP), a ST inhibitor. PhIP was significantly more clastogenic in the three AT-enriched sublines than in the parental line (<em>p</em> < 0.001). DMBA (a ST-activated mutagen), on the other hand, equally induced MNs in all the cell lines. When PCP was added to the test system, the MN-induction ability of DMBA, but not of PhIP, decreased significantly (<em>p</em> < 0.001). These findings strongly suggest that PhIP clastogenicity is due to AT activity and not to ST activity.</p></div>","PeriodicalId":100938,"journal":{"name":"Mutation Research/Genetic Toxicology","volume":"371 1","pages":"Pages 23-28"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0165-1218(96)90091-9","citationCount":"7","resultStr":"{\"title\":\"The possible role of acetyltransferase in the induction of cytogenetic effects by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in cultured Chinese hamster cells\",\"authors\":\"Chino Otsuka, Kunihiko F. Miura, Motoi Ishidate Jr.\",\"doi\":\"10.1016/S0165-1218(96)90091-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When metabolically activated, 2-amino-1-methyl-6-phenylimidazo[4,5-<em>b</em>]pyridine (PhIP), a heterocyclic amine isolated from cooked food, is clastogenic in cultured Chinese hamster and human cells. Secondary metabolites of PhIP are formed via acetyltransferase (AT) and sulfotransferase (ST) activity; however, which is responsible for its clastogenic effect is unknown. We addressed this question. We used a parental Chinese hamster lung cell line and three sublines transfected with different AT genes to test the clastogenic (i.e., micronucleus-inducing) effects of metabolically activated PhIP and 7,12-dimethylbenz[<em>a</em>]anthracene (DMBA) in the presence and absence of pentachlorophenol (PCP), a ST inhibitor. PhIP was significantly more clastogenic in the three AT-enriched sublines than in the parental line (<em>p</em> < 0.001). DMBA (a ST-activated mutagen), on the other hand, equally induced MNs in all the cell lines. When PCP was added to the test system, the MN-induction ability of DMBA, but not of PhIP, decreased significantly (<em>p</em> < 0.001). These findings strongly suggest that PhIP clastogenicity is due to AT activity and not to ST activity.</p></div>\",\"PeriodicalId\":100938,\"journal\":{\"name\":\"Mutation Research/Genetic Toxicology\",\"volume\":\"371 1\",\"pages\":\"Pages 23-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0165-1218(96)90091-9\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/Genetic Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165121896900919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/Genetic Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165121896900919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The possible role of acetyltransferase in the induction of cytogenetic effects by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in cultured Chinese hamster cells
When metabolically activated, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic amine isolated from cooked food, is clastogenic in cultured Chinese hamster and human cells. Secondary metabolites of PhIP are formed via acetyltransferase (AT) and sulfotransferase (ST) activity; however, which is responsible for its clastogenic effect is unknown. We addressed this question. We used a parental Chinese hamster lung cell line and three sublines transfected with different AT genes to test the clastogenic (i.e., micronucleus-inducing) effects of metabolically activated PhIP and 7,12-dimethylbenz[a]anthracene (DMBA) in the presence and absence of pentachlorophenol (PCP), a ST inhibitor. PhIP was significantly more clastogenic in the three AT-enriched sublines than in the parental line (p < 0.001). DMBA (a ST-activated mutagen), on the other hand, equally induced MNs in all the cell lines. When PCP was added to the test system, the MN-induction ability of DMBA, but not of PhIP, decreased significantly (p < 0.001). These findings strongly suggest that PhIP clastogenicity is due to AT activity and not to ST activity.