{"title":"解剖癌细胞的个性:单个人类胶质瘤细胞的形态学和分子动力学。","authors":"K A Giuliano","doi":"10.1002/(SICI)1097-0169(1996)35:3<237::AID-CM6>3.0.CO;2-5","DOIUrl":null,"url":null,"abstract":"<p><p>A glioma produces some of the most heterogeneously growing, angiogenic, and invasive primary brain tumor cells known. To dissect cellular individuality, and therefore tumor heterogeneity, multiple morphological and molecular processes in single living human glioma cells were measured using multimode light microscopy. Feature extraction of time-lapse image series of spreading, locomoting, and interacting cells either in the presence or absence of physiological modulators was performed by defining five parameters that described cell shape, movement, and cell-cell contacts. Concurrent visualization of all five parameters with a scatterplot matrix revealed temporal as well as time-independent relationships between the parameters that were sufficient to define the individuality of normal and transformed glial cells. Because the actin-cytoskeleton plays a role in regulating the cellular processes described above, the dynamics of a fluorescent analog of non-muscle actin within motile glioma cells were measured in addition to the morphological parameters. The actin-cytoskeleton within the thin sweeping lamellipodia of a glioma exhibited a paucity of large stress fibers, a rich collection of microvillar structures containing actin, and dynamics that were distinct from those of normal motile cells. This approach can therefore potentially be used to dissect the molecular origins of transformation using a small number of representative tumor cells.</p>","PeriodicalId":9675,"journal":{"name":"Cell motility and the cytoskeleton","volume":"35 3","pages":"237-53"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/(SICI)1097-0169(1996)35:3<237::AID-CM6>3.0.CO;2-5","citationCount":"10","resultStr":"{\"title\":\"Dissecting the individuality of cancer cells: the morphological and molecular dynamics of single human glioma cells.\",\"authors\":\"K A Giuliano\",\"doi\":\"10.1002/(SICI)1097-0169(1996)35:3<237::AID-CM6>3.0.CO;2-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A glioma produces some of the most heterogeneously growing, angiogenic, and invasive primary brain tumor cells known. To dissect cellular individuality, and therefore tumor heterogeneity, multiple morphological and molecular processes in single living human glioma cells were measured using multimode light microscopy. Feature extraction of time-lapse image series of spreading, locomoting, and interacting cells either in the presence or absence of physiological modulators was performed by defining five parameters that described cell shape, movement, and cell-cell contacts. Concurrent visualization of all five parameters with a scatterplot matrix revealed temporal as well as time-independent relationships between the parameters that were sufficient to define the individuality of normal and transformed glial cells. Because the actin-cytoskeleton plays a role in regulating the cellular processes described above, the dynamics of a fluorescent analog of non-muscle actin within motile glioma cells were measured in addition to the morphological parameters. The actin-cytoskeleton within the thin sweeping lamellipodia of a glioma exhibited a paucity of large stress fibers, a rich collection of microvillar structures containing actin, and dynamics that were distinct from those of normal motile cells. This approach can therefore potentially be used to dissect the molecular origins of transformation using a small number of representative tumor cells.</p>\",\"PeriodicalId\":9675,\"journal\":{\"name\":\"Cell motility and the cytoskeleton\",\"volume\":\"35 3\",\"pages\":\"237-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/(SICI)1097-0169(1996)35:3<237::AID-CM6>3.0.CO;2-5\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell motility and the cytoskeleton\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/(SICI)1097-0169(1996)35:3<237::AID-CM6>3.0.CO;2-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell motility and the cytoskeleton","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1097-0169(1996)35:3<237::AID-CM6>3.0.CO;2-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dissecting the individuality of cancer cells: the morphological and molecular dynamics of single human glioma cells.
A glioma produces some of the most heterogeneously growing, angiogenic, and invasive primary brain tumor cells known. To dissect cellular individuality, and therefore tumor heterogeneity, multiple morphological and molecular processes in single living human glioma cells were measured using multimode light microscopy. Feature extraction of time-lapse image series of spreading, locomoting, and interacting cells either in the presence or absence of physiological modulators was performed by defining five parameters that described cell shape, movement, and cell-cell contacts. Concurrent visualization of all five parameters with a scatterplot matrix revealed temporal as well as time-independent relationships between the parameters that were sufficient to define the individuality of normal and transformed glial cells. Because the actin-cytoskeleton plays a role in regulating the cellular processes described above, the dynamics of a fluorescent analog of non-muscle actin within motile glioma cells were measured in addition to the morphological parameters. The actin-cytoskeleton within the thin sweeping lamellipodia of a glioma exhibited a paucity of large stress fibers, a rich collection of microvillar structures containing actin, and dynamics that were distinct from those of normal motile cells. This approach can therefore potentially be used to dissect the molecular origins of transformation using a small number of representative tumor cells.