K Ondrias, A M Brillantes, A Scott, B E Ehrlich, A R Marks
{"title":"克隆表达的ryanodine受体/钙释放通道的单通道特性和钙电导。","authors":"K Ondrias, A M Brillantes, A Scott, B E Ehrlich, A R Marks","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The calcium-release channel/ryanodine receptor of the sarcoplasmic reticulum is a 2.3 million-D structure required for intracellular calcium release during excitation-contraction coupling in skeletal muscle. This structure is the largest ion channel characterized to date and is composed of four 565,000-D ryanodine receptors plus four molecules of FKBP12. In the present study we describe the single channel properties of the cloned expressed ryanodine receptor, with and without FKBP12, reconstituted into planar lipid bilayers with Ca as the charge carrier. The conductance for Ca (luminal, 53 mM/cytoplasmic, 10 microM) was 103 pS for the cloned expressed RyR and for the native channel from rabbit skeletal muscle. Conductance through the channel was Ca dependent: A decrease in the Ca gradient to luminal 10.6/cytoplasmic 10 microM reduced conductance to 68 pS for both the cloned and native RyR. The recombinant ryanodine receptor consistently behaved like the native skeletal muscle channel in terms of activation by caffeine, calcium, and ATP; inhibition by ruthenium red; and modulation by ryanodine. In the absence of FKBP12, the cloned expressed RyR exhibited multiple subconductance states and addition of FKBP12 reduced the frequency of subconductance states. These results show that with Ca as the charge carrier, the single channel properties of the cloned expressed RyR plus FKBP12 are essentially the same as those of the native channel.</p>","PeriodicalId":76550,"journal":{"name":"Society of General Physiologists series","volume":"51 ","pages":"29-45"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single channel properties and calcium conductance of the cloned expressed ryanodine receptor/calcium-release channel.\",\"authors\":\"K Ondrias, A M Brillantes, A Scott, B E Ehrlich, A R Marks\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The calcium-release channel/ryanodine receptor of the sarcoplasmic reticulum is a 2.3 million-D structure required for intracellular calcium release during excitation-contraction coupling in skeletal muscle. This structure is the largest ion channel characterized to date and is composed of four 565,000-D ryanodine receptors plus four molecules of FKBP12. In the present study we describe the single channel properties of the cloned expressed ryanodine receptor, with and without FKBP12, reconstituted into planar lipid bilayers with Ca as the charge carrier. The conductance for Ca (luminal, 53 mM/cytoplasmic, 10 microM) was 103 pS for the cloned expressed RyR and for the native channel from rabbit skeletal muscle. Conductance through the channel was Ca dependent: A decrease in the Ca gradient to luminal 10.6/cytoplasmic 10 microM reduced conductance to 68 pS for both the cloned and native RyR. The recombinant ryanodine receptor consistently behaved like the native skeletal muscle channel in terms of activation by caffeine, calcium, and ATP; inhibition by ruthenium red; and modulation by ryanodine. In the absence of FKBP12, the cloned expressed RyR exhibited multiple subconductance states and addition of FKBP12 reduced the frequency of subconductance states. These results show that with Ca as the charge carrier, the single channel properties of the cloned expressed RyR plus FKBP12 are essentially the same as those of the native channel.</p>\",\"PeriodicalId\":76550,\"journal\":{\"name\":\"Society of General Physiologists series\",\"volume\":\"51 \",\"pages\":\"29-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Society of General Physiologists series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Society of General Physiologists series","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single channel properties and calcium conductance of the cloned expressed ryanodine receptor/calcium-release channel.
The calcium-release channel/ryanodine receptor of the sarcoplasmic reticulum is a 2.3 million-D structure required for intracellular calcium release during excitation-contraction coupling in skeletal muscle. This structure is the largest ion channel characterized to date and is composed of four 565,000-D ryanodine receptors plus four molecules of FKBP12. In the present study we describe the single channel properties of the cloned expressed ryanodine receptor, with and without FKBP12, reconstituted into planar lipid bilayers with Ca as the charge carrier. The conductance for Ca (luminal, 53 mM/cytoplasmic, 10 microM) was 103 pS for the cloned expressed RyR and for the native channel from rabbit skeletal muscle. Conductance through the channel was Ca dependent: A decrease in the Ca gradient to luminal 10.6/cytoplasmic 10 microM reduced conductance to 68 pS for both the cloned and native RyR. The recombinant ryanodine receptor consistently behaved like the native skeletal muscle channel in terms of activation by caffeine, calcium, and ATP; inhibition by ruthenium red; and modulation by ryanodine. In the absence of FKBP12, the cloned expressed RyR exhibited multiple subconductance states and addition of FKBP12 reduced the frequency of subconductance states. These results show that with Ca as the charge carrier, the single channel properties of the cloned expressed RyR plus FKBP12 are essentially the same as those of the native channel.