{"title":"禽纤溶酶原激活物和基质金属蛋白酶-2的结构和功能揭示了它们在哺乳动物中的对应酶、调控及其在肿瘤侵袭中的作用。","authors":"D S Alexander, R T Aimes, J P Quigley","doi":"10.1159/000468615","DOIUrl":null,"url":null,"abstract":"<p><p>Rous sarcoma virus-transformed chick embryo fibroblasts (RSVCEF) constitute a well-characterized model system for oncogenic transformation, matrix degradation, and cancer invasion. As RSVCEF cultures employ both serine protease and metalloprotease cascades in the process of matrix degradation, they have contributed significantly to understanding the nature and regulation of these molecules involved in invasive cell behavior. RSVCEF produce elevated levels of a matrix metalloprotease-2 (MMP-2) whose hemopexin domain differs from mammalian MMP-2. The majority of MMP-2 produced by RSVCEF is present in a TIMP-free form which enhances its activation, catalytic activity and substrate specificity and therefore its matrix-degrading ability. RSVCEFs also exhibit high levels of urokinase-type plasminogen activator (uPA), which is found in active form in their conditioned medium in complete absence of plasminogen. Recombinantly expressed avian uPA is also in active form, while an active-site mutant of the same maintains its zymogen form, indicating the mechanism of activation of chicken uPA is autocatalytic. A domain and sequence comparison between chicken and human uPA attempts to identify motifs potentially responsible for the zymogen instability of avian uPA and its capability to autoactivate.</p>","PeriodicalId":11854,"journal":{"name":"Enzyme & protein","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000468615","citationCount":"9","resultStr":"{\"title\":\"What structure and function of avian plasminogen activator and matrix metalloproteinase-2 reveal about their counterpart mammalian enzymes, their regulation and their role in tumor invasion.\",\"authors\":\"D S Alexander, R T Aimes, J P Quigley\",\"doi\":\"10.1159/000468615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rous sarcoma virus-transformed chick embryo fibroblasts (RSVCEF) constitute a well-characterized model system for oncogenic transformation, matrix degradation, and cancer invasion. As RSVCEF cultures employ both serine protease and metalloprotease cascades in the process of matrix degradation, they have contributed significantly to understanding the nature and regulation of these molecules involved in invasive cell behavior. RSVCEF produce elevated levels of a matrix metalloprotease-2 (MMP-2) whose hemopexin domain differs from mammalian MMP-2. The majority of MMP-2 produced by RSVCEF is present in a TIMP-free form which enhances its activation, catalytic activity and substrate specificity and therefore its matrix-degrading ability. RSVCEFs also exhibit high levels of urokinase-type plasminogen activator (uPA), which is found in active form in their conditioned medium in complete absence of plasminogen. Recombinantly expressed avian uPA is also in active form, while an active-site mutant of the same maintains its zymogen form, indicating the mechanism of activation of chicken uPA is autocatalytic. A domain and sequence comparison between chicken and human uPA attempts to identify motifs potentially responsible for the zymogen instability of avian uPA and its capability to autoactivate.</p>\",\"PeriodicalId\":11854,\"journal\":{\"name\":\"Enzyme & protein\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000468615\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme & protein\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000468615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme & protein","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000468615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What structure and function of avian plasminogen activator and matrix metalloproteinase-2 reveal about their counterpart mammalian enzymes, their regulation and their role in tumor invasion.
Rous sarcoma virus-transformed chick embryo fibroblasts (RSVCEF) constitute a well-characterized model system for oncogenic transformation, matrix degradation, and cancer invasion. As RSVCEF cultures employ both serine protease and metalloprotease cascades in the process of matrix degradation, they have contributed significantly to understanding the nature and regulation of these molecules involved in invasive cell behavior. RSVCEF produce elevated levels of a matrix metalloprotease-2 (MMP-2) whose hemopexin domain differs from mammalian MMP-2. The majority of MMP-2 produced by RSVCEF is present in a TIMP-free form which enhances its activation, catalytic activity and substrate specificity and therefore its matrix-degrading ability. RSVCEFs also exhibit high levels of urokinase-type plasminogen activator (uPA), which is found in active form in their conditioned medium in complete absence of plasminogen. Recombinantly expressed avian uPA is also in active form, while an active-site mutant of the same maintains its zymogen form, indicating the mechanism of activation of chicken uPA is autocatalytic. A domain and sequence comparison between chicken and human uPA attempts to identify motifs potentially responsible for the zymogen instability of avian uPA and its capability to autoactivate.