{"title":"光子能量< 150kev的直接膜中AgBr的吸收剂量:与光密度的关系。理论计算与实验评价。","authors":"E Helmrot, G Alm Carlsson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In the radiological process it is necessary to develop tools so as to explore how X-rays can be used in the most effective way. Evaluation of models to derive measures of image quality and risk-related parameters is one possibility of getting such a tool. Modelling the image receptor, an important part of the imaging chain, is then required. The aim of this work was to find convenient and accurate ways of describing the blackening of direct dental films by X-rays. Since the beginning of the 20th century, the relation between optical density and photon interactions in the silver bromide in X-ray films has been investigated by many authors. The first attempts used simple quantum theories with no consideration of underlying physical interaction processes. The theories were gradually made more realistic by the introduction of dosimetric concepts and cavity theory. A review of cavity theories for calculating the mean absorbed dose in the AgBr grains of the film emulsion is given in this work. The cavity theories of GREENING (15) and SPIERS-CHARLTON (37) were selected for calculating the mean absorbed dose in the AgBr grains relative to the air collision kerma (Kc,air) of the incident photons of Ultra-speed and Ektaspeed (intraoral) films using up-to-date values of interaction coefficients. GREENING'S theory is a multi-grain theory and the results depend on the relative amounts of silver bromide and gelatine in the emulsion layer. In the single grain theory of SPIERS-CHARLTON, the shape and size of the silver bromide grain are important. Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING'S theory. They were also found to be proportional to the collision kerma in silver bromide (Kc,AgBr) indicating proportionality between Kc,AgBr and the mean absorbed dose in silver bromide. While GREENING'S theory shows that the quotient of the mean absorbed dose in silver bromide and Kc,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between Kc,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( < 30 keV) and GREENING'S theory, which is strictly valid at energies above 50 keV. This study shows that the blackening of non-screen films can be related directly to the energy absorbed in the AgBr grains of the emulsion layer and that, for the purpose of modelling the imaging chain in intraoral radiography, film response can be represented by Kc,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving Kc,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care.</p>","PeriodicalId":7159,"journal":{"name":"Acta radiologica. Supplementum","volume":"402 ","pages":"1-50"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorbed dose in AgBr in direct film for photon energies ( < 150 keV): relation to optical density. Theoretical calculation and experimental evaluation.\",\"authors\":\"E Helmrot, G Alm Carlsson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the radiological process it is necessary to develop tools so as to explore how X-rays can be used in the most effective way. Evaluation of models to derive measures of image quality and risk-related parameters is one possibility of getting such a tool. Modelling the image receptor, an important part of the imaging chain, is then required. The aim of this work was to find convenient and accurate ways of describing the blackening of direct dental films by X-rays. Since the beginning of the 20th century, the relation between optical density and photon interactions in the silver bromide in X-ray films has been investigated by many authors. The first attempts used simple quantum theories with no consideration of underlying physical interaction processes. The theories were gradually made more realistic by the introduction of dosimetric concepts and cavity theory. A review of cavity theories for calculating the mean absorbed dose in the AgBr grains of the film emulsion is given in this work. The cavity theories of GREENING (15) and SPIERS-CHARLTON (37) were selected for calculating the mean absorbed dose in the AgBr grains relative to the air collision kerma (Kc,air) of the incident photons of Ultra-speed and Ektaspeed (intraoral) films using up-to-date values of interaction coefficients. GREENING'S theory is a multi-grain theory and the results depend on the relative amounts of silver bromide and gelatine in the emulsion layer. In the single grain theory of SPIERS-CHARLTON, the shape and size of the silver bromide grain are important. Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING'S theory. They were also found to be proportional to the collision kerma in silver bromide (Kc,AgBr) indicating proportionality between Kc,AgBr and the mean absorbed dose in silver bromide. While GREENING'S theory shows that the quotient of the mean absorbed dose in silver bromide and Kc,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between Kc,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( < 30 keV) and GREENING'S theory, which is strictly valid at energies above 50 keV. This study shows that the blackening of non-screen films can be related directly to the energy absorbed in the AgBr grains of the emulsion layer and that, for the purpose of modelling the imaging chain in intraoral radiography, film response can be represented by Kc,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving Kc,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care.</p>\",\"PeriodicalId\":7159,\"journal\":{\"name\":\"Acta radiologica. Supplementum\",\"volume\":\"402 \",\"pages\":\"1-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta radiologica. Supplementum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta radiologica. Supplementum","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Absorbed dose in AgBr in direct film for photon energies ( < 150 keV): relation to optical density. Theoretical calculation and experimental evaluation.
In the radiological process it is necessary to develop tools so as to explore how X-rays can be used in the most effective way. Evaluation of models to derive measures of image quality and risk-related parameters is one possibility of getting such a tool. Modelling the image receptor, an important part of the imaging chain, is then required. The aim of this work was to find convenient and accurate ways of describing the blackening of direct dental films by X-rays. Since the beginning of the 20th century, the relation between optical density and photon interactions in the silver bromide in X-ray films has been investigated by many authors. The first attempts used simple quantum theories with no consideration of underlying physical interaction processes. The theories were gradually made more realistic by the introduction of dosimetric concepts and cavity theory. A review of cavity theories for calculating the mean absorbed dose in the AgBr grains of the film emulsion is given in this work. The cavity theories of GREENING (15) and SPIERS-CHARLTON (37) were selected for calculating the mean absorbed dose in the AgBr grains relative to the air collision kerma (Kc,air) of the incident photons of Ultra-speed and Ektaspeed (intraoral) films using up-to-date values of interaction coefficients. GREENING'S theory is a multi-grain theory and the results depend on the relative amounts of silver bromide and gelatine in the emulsion layer. In the single grain theory of SPIERS-CHARLTON, the shape and size of the silver bromide grain are important. Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING'S theory. They were also found to be proportional to the collision kerma in silver bromide (Kc,AgBr) indicating proportionality between Kc,AgBr and the mean absorbed dose in silver bromide. While GREENING'S theory shows that the quotient of the mean absorbed dose in silver bromide and Kc,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between Kc,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( < 30 keV) and GREENING'S theory, which is strictly valid at energies above 50 keV. This study shows that the blackening of non-screen films can be related directly to the energy absorbed in the AgBr grains of the emulsion layer and that, for the purpose of modelling the imaging chain in intraoral radiography, film response can be represented by Kc,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving Kc,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care.