{"title":"优化三维坐标重建从成对的立体图像使用校准的幻影","authors":"C.F. Small, J.T. Bryant","doi":"10.1016/0141-5425(93)90050-9","DOIUrl":null,"url":null,"abstract":"<div><p>A refinement to a previously described three-dimensional reconstruction algorithm based on point identification in calibrated non-orthogonal radiograms (stereo-pairs) is described. The modification involves a computation of the focal point magnitude of the point in three dimensions, analogous to focusing in two dimensions, as well as the most likely location of the target point in 3-space; the focal point magnitude may be thought of as the precision of the point identification. Multiple observer studies of the same stereopair can be used to estimate three-dimensional reconstruction accuracy by providing an average location and a mean distance from average. Both measures are useful parameters for initial selection of bone landmark references and for error propagation studies.</p></div>","PeriodicalId":75992,"journal":{"name":"Journal of biomedical engineering","volume":"15 2","pages":"Pages 163-166"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0141-5425(93)90050-9","citationCount":"5","resultStr":"{\"title\":\"Optimized 3D coordinate reconstruction from paired stereographs using a calibrated phantom\",\"authors\":\"C.F. Small, J.T. Bryant\",\"doi\":\"10.1016/0141-5425(93)90050-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A refinement to a previously described three-dimensional reconstruction algorithm based on point identification in calibrated non-orthogonal radiograms (stereo-pairs) is described. The modification involves a computation of the focal point magnitude of the point in three dimensions, analogous to focusing in two dimensions, as well as the most likely location of the target point in 3-space; the focal point magnitude may be thought of as the precision of the point identification. Multiple observer studies of the same stereopair can be used to estimate three-dimensional reconstruction accuracy by providing an average location and a mean distance from average. Both measures are useful parameters for initial selection of bone landmark references and for error propagation studies.</p></div>\",\"PeriodicalId\":75992,\"journal\":{\"name\":\"Journal of biomedical engineering\",\"volume\":\"15 2\",\"pages\":\"Pages 163-166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0141-5425(93)90050-9\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0141542593900509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0141542593900509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized 3D coordinate reconstruction from paired stereographs using a calibrated phantom
A refinement to a previously described three-dimensional reconstruction algorithm based on point identification in calibrated non-orthogonal radiograms (stereo-pairs) is described. The modification involves a computation of the focal point magnitude of the point in three dimensions, analogous to focusing in two dimensions, as well as the most likely location of the target point in 3-space; the focal point magnitude may be thought of as the precision of the point identification. Multiple observer studies of the same stereopair can be used to estimate three-dimensional reconstruction accuracy by providing an average location and a mean distance from average. Both measures are useful parameters for initial selection of bone landmark references and for error propagation studies.