{"title":"用于MSH受体研究的ACTH1-17生物素化衍生物的合成及其生物学特性。","authors":"C Bagutti, A N Eberle","doi":"10.3109/10799899309073657","DOIUrl":null,"url":null,"abstract":"<p><p>A biotinylated derivative of [beta-Ala1,Lys17]-ACTH1-17-NH-(CH2)4-NH2 (ACTH1-17) was synthesized and biologically characterized. The heptadecapeptide with free N-terminus and blocked side-chains was prepared by the solid-phase method using TentaGel resin and a 4-aminobutylamide linker. Biotinyl-beta-Ala-OH was then coupled to the terminal amino group and the resulting [N alpha-(biotinyl-beta-alanyl)-beta-Ala1,Lys17]-ACTH1-17-NH-(CH2)4-N H2 (Bio-ACTH1-17) cleaved from the resin, purified and analyzed. Competition binding assays with mouse B16-F1 and human D10 and HBL melanoma cells using [125I]-alpha-MSH as radioligand gave dissociation constants for Bio-ACTH1-17 of 1.67 +/- 0.07 nM (B16-F1), 0.02 +/- 0.005 nM (D10) and 0.21 +/- 0.02 nM (HBL). The EC50 for Bio-ACTH1-17 in the B16 melanin assay was 4.15 +/- 1.0 nM. Analysis of the binding characteristics of [125I]-Bio-ACTH1-17 demonstrated that in human melanoma cells this radioligand was displaced by ACTH1-17 as well as alpha-MSH whereas in B16-F1 cells the tracer was only displaced from the binding site by ACTH1-17. Studies of Bio-ACTH1-17 with streptavidin showed that the peptide is to a large extent trapped specifically through reaction with biotin. These results demonstrate that (1) the biological characteristics of Bio-ACTH1-17 are almost identical to those of ACTH1-17, (2) Bio-ACTH1-17 is bound by avidin, and (3) Bio-ACTH1-17 may become a useful tool for MSH receptor targeting.</p>","PeriodicalId":16948,"journal":{"name":"Journal of receptor research","volume":"13 1-4","pages":"229-44"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10799899309073657","citationCount":"4","resultStr":"{\"title\":\"Synthesis and biological properties of a biotinylated derivative of ACTH1-17 for MSH receptor studies.\",\"authors\":\"C Bagutti, A N Eberle\",\"doi\":\"10.3109/10799899309073657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A biotinylated derivative of [beta-Ala1,Lys17]-ACTH1-17-NH-(CH2)4-NH2 (ACTH1-17) was synthesized and biologically characterized. The heptadecapeptide with free N-terminus and blocked side-chains was prepared by the solid-phase method using TentaGel resin and a 4-aminobutylamide linker. Biotinyl-beta-Ala-OH was then coupled to the terminal amino group and the resulting [N alpha-(biotinyl-beta-alanyl)-beta-Ala1,Lys17]-ACTH1-17-NH-(CH2)4-N H2 (Bio-ACTH1-17) cleaved from the resin, purified and analyzed. Competition binding assays with mouse B16-F1 and human D10 and HBL melanoma cells using [125I]-alpha-MSH as radioligand gave dissociation constants for Bio-ACTH1-17 of 1.67 +/- 0.07 nM (B16-F1), 0.02 +/- 0.005 nM (D10) and 0.21 +/- 0.02 nM (HBL). The EC50 for Bio-ACTH1-17 in the B16 melanin assay was 4.15 +/- 1.0 nM. Analysis of the binding characteristics of [125I]-Bio-ACTH1-17 demonstrated that in human melanoma cells this radioligand was displaced by ACTH1-17 as well as alpha-MSH whereas in B16-F1 cells the tracer was only displaced from the binding site by ACTH1-17. Studies of Bio-ACTH1-17 with streptavidin showed that the peptide is to a large extent trapped specifically through reaction with biotin. These results demonstrate that (1) the biological characteristics of Bio-ACTH1-17 are almost identical to those of ACTH1-17, (2) Bio-ACTH1-17 is bound by avidin, and (3) Bio-ACTH1-17 may become a useful tool for MSH receptor targeting.</p>\",\"PeriodicalId\":16948,\"journal\":{\"name\":\"Journal of receptor research\",\"volume\":\"13 1-4\",\"pages\":\"229-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/10799899309073657\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of receptor research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10799899309073657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of receptor research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10799899309073657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and biological properties of a biotinylated derivative of ACTH1-17 for MSH receptor studies.
A biotinylated derivative of [beta-Ala1,Lys17]-ACTH1-17-NH-(CH2)4-NH2 (ACTH1-17) was synthesized and biologically characterized. The heptadecapeptide with free N-terminus and blocked side-chains was prepared by the solid-phase method using TentaGel resin and a 4-aminobutylamide linker. Biotinyl-beta-Ala-OH was then coupled to the terminal amino group and the resulting [N alpha-(biotinyl-beta-alanyl)-beta-Ala1,Lys17]-ACTH1-17-NH-(CH2)4-N H2 (Bio-ACTH1-17) cleaved from the resin, purified and analyzed. Competition binding assays with mouse B16-F1 and human D10 and HBL melanoma cells using [125I]-alpha-MSH as radioligand gave dissociation constants for Bio-ACTH1-17 of 1.67 +/- 0.07 nM (B16-F1), 0.02 +/- 0.005 nM (D10) and 0.21 +/- 0.02 nM (HBL). The EC50 for Bio-ACTH1-17 in the B16 melanin assay was 4.15 +/- 1.0 nM. Analysis of the binding characteristics of [125I]-Bio-ACTH1-17 demonstrated that in human melanoma cells this radioligand was displaced by ACTH1-17 as well as alpha-MSH whereas in B16-F1 cells the tracer was only displaced from the binding site by ACTH1-17. Studies of Bio-ACTH1-17 with streptavidin showed that the peptide is to a large extent trapped specifically through reaction with biotin. These results demonstrate that (1) the biological characteristics of Bio-ACTH1-17 are almost identical to those of ACTH1-17, (2) Bio-ACTH1-17 is bound by avidin, and (3) Bio-ACTH1-17 may become a useful tool for MSH receptor targeting.