M Müller, C Flössel, M Haase, T Luther, S Albrecht, P P Nawroth, Y Zhang
{"title":"人乳腺癌细胞系组织因子的细胞定位。","authors":"M Müller, C Flössel, M Haase, T Luther, S Albrecht, P P Nawroth, Y Zhang","doi":"10.1007/BF02915121","DOIUrl":null,"url":null,"abstract":"<p><p>Expression of tissue factor (TF), the cellular receptor of clotting factor VII/VIIa, is a feature of certain malignant tumours. The TF gene has been classified as an immediate early gene responsive to serum and cytokines. Thus, the regulation of TF gene expression seems to play a role in cell growth. Recently, we have shown that constitutive TF expression in MCF-7 breast cancer cells is modulated by such growth factors as EGF, TGF alpha, and IL-1. The present study deals with the immunocytochemically detectable cellular distribution of TF in human breast cancer cell lines MCF-7 and MaTu stimulated by EGF and TGF alpha. In MCF-7 cells growing logarithmically, stimulation led to a significant increase of TF mRNA after 2 h (in situ hybridization, Northern blot) and to maximum TF expression after 6 h (immunohistochemistry). When decorated by monoclonal antibodies, TF protein showed a pronounced localization at ruffled membrane areas, cell edges, and processes of spreading cells after 6 and 20 h. In more flattened cells TF was concentrated in peripheric lamellae and microspikes communicating with neighbouring cells. After epithelial colony pattern had established, TF was predominantly accumulated at the intercellular boundaries. The vary same distribution patterns as seen in MCF-7 cells were true for the stimulated MaTu cell line.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":23521,"journal":{"name":"Virchows Archiv. B, Cell pathology including molecular pathology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02915121","citationCount":"14","resultStr":"{\"title\":\"Cellular localization of tissue factor in human breast cancer cell lines.\",\"authors\":\"M Müller, C Flössel, M Haase, T Luther, S Albrecht, P P Nawroth, Y Zhang\",\"doi\":\"10.1007/BF02915121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Expression of tissue factor (TF), the cellular receptor of clotting factor VII/VIIa, is a feature of certain malignant tumours. The TF gene has been classified as an immediate early gene responsive to serum and cytokines. Thus, the regulation of TF gene expression seems to play a role in cell growth. Recently, we have shown that constitutive TF expression in MCF-7 breast cancer cells is modulated by such growth factors as EGF, TGF alpha, and IL-1. The present study deals with the immunocytochemically detectable cellular distribution of TF in human breast cancer cell lines MCF-7 and MaTu stimulated by EGF and TGF alpha. In MCF-7 cells growing logarithmically, stimulation led to a significant increase of TF mRNA after 2 h (in situ hybridization, Northern blot) and to maximum TF expression after 6 h (immunohistochemistry). When decorated by monoclonal antibodies, TF protein showed a pronounced localization at ruffled membrane areas, cell edges, and processes of spreading cells after 6 and 20 h. In more flattened cells TF was concentrated in peripheric lamellae and microspikes communicating with neighbouring cells. After epithelial colony pattern had established, TF was predominantly accumulated at the intercellular boundaries. The vary same distribution patterns as seen in MCF-7 cells were true for the stimulated MaTu cell line.(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":23521,\"journal\":{\"name\":\"Virchows Archiv. B, Cell pathology including molecular pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF02915121\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virchows Archiv. B, Cell pathology including molecular pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02915121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virchows Archiv. B, Cell pathology including molecular pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02915121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cellular localization of tissue factor in human breast cancer cell lines.
Expression of tissue factor (TF), the cellular receptor of clotting factor VII/VIIa, is a feature of certain malignant tumours. The TF gene has been classified as an immediate early gene responsive to serum and cytokines. Thus, the regulation of TF gene expression seems to play a role in cell growth. Recently, we have shown that constitutive TF expression in MCF-7 breast cancer cells is modulated by such growth factors as EGF, TGF alpha, and IL-1. The present study deals with the immunocytochemically detectable cellular distribution of TF in human breast cancer cell lines MCF-7 and MaTu stimulated by EGF and TGF alpha. In MCF-7 cells growing logarithmically, stimulation led to a significant increase of TF mRNA after 2 h (in situ hybridization, Northern blot) and to maximum TF expression after 6 h (immunohistochemistry). When decorated by monoclonal antibodies, TF protein showed a pronounced localization at ruffled membrane areas, cell edges, and processes of spreading cells after 6 and 20 h. In more flattened cells TF was concentrated in peripheric lamellae and microspikes communicating with neighbouring cells. After epithelial colony pattern had established, TF was predominantly accumulated at the intercellular boundaries. The vary same distribution patterns as seen in MCF-7 cells were true for the stimulated MaTu cell line.(ABSTRACT TRUNCATED AT 250 WORDS)