由咬合力产生的牙齿和PDL结构的应力。

C Kaewsuriyathumrong, K Soma
{"title":"由咬合力产生的牙齿和PDL结构的应力。","authors":"C Kaewsuriyathumrong,&nbsp;K Soma","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Stress is created by the bite force and distributed along the tooth towards the PDL structure. It is of interest to investigate the complex tooth structure, consisting of enamel, dentine, pulp, and thin cementum layer and how it functions in stress distribution. This study was intended to analyze the role of the tooth and PDL structures in stress distribution, by using a three-dimensional finite element method. A mandibular first molar was constructed for the finite element model. The bite forces were measured by Pressensor, and these bite force values were programmed to load down upon the occlusal surface of the model. The results were expressed by stress contours and principal stress graphs. The stress was found to decrease as it distributed from the occlusal surface towards the cervical portion in the dentine and the pulp. In contrast, the stress, especially a compressive stress, increased gradually in the enamel layer in the lower half of the crown, in the same direction. It was apparent in displayed pattern of stress that the stress distributed outward towards the surrounding portion of the lower half of the crown. This resulted in a uniform magnitude of the principal stresses for all aspects of the mesial and distal roots. The stresses of both roots were generally compressive stress. When comparing the stress values of sampling points positioned between the root surfaces and the periphery of the PDL (the alveolar wall), all principal stresses for those of the PDL (periodontal ligament) were less than those of the root surfaces. These findings revealed that the PDL, the dentine, and the pulp functioned in cooperation in stress reduction; and the sequences of enamel, dentine, and pulp influenced the pattern of stress distribution. The different material properties of the tooth structure in sequence was considered a very important factor for stress reduction and for the pattern of stress distribution, especially in the root.</p>","PeriodicalId":22311,"journal":{"name":"The Bulletin of Tokyo Medical and Dental University","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress of tooth and PDL structure created by bite force.\",\"authors\":\"C Kaewsuriyathumrong,&nbsp;K Soma\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stress is created by the bite force and distributed along the tooth towards the PDL structure. It is of interest to investigate the complex tooth structure, consisting of enamel, dentine, pulp, and thin cementum layer and how it functions in stress distribution. This study was intended to analyze the role of the tooth and PDL structures in stress distribution, by using a three-dimensional finite element method. A mandibular first molar was constructed for the finite element model. The bite forces were measured by Pressensor, and these bite force values were programmed to load down upon the occlusal surface of the model. The results were expressed by stress contours and principal stress graphs. The stress was found to decrease as it distributed from the occlusal surface towards the cervical portion in the dentine and the pulp. In contrast, the stress, especially a compressive stress, increased gradually in the enamel layer in the lower half of the crown, in the same direction. It was apparent in displayed pattern of stress that the stress distributed outward towards the surrounding portion of the lower half of the crown. This resulted in a uniform magnitude of the principal stresses for all aspects of the mesial and distal roots. The stresses of both roots were generally compressive stress. When comparing the stress values of sampling points positioned between the root surfaces and the periphery of the PDL (the alveolar wall), all principal stresses for those of the PDL (periodontal ligament) were less than those of the root surfaces. These findings revealed that the PDL, the dentine, and the pulp functioned in cooperation in stress reduction; and the sequences of enamel, dentine, and pulp influenced the pattern of stress distribution. The different material properties of the tooth structure in sequence was considered a very important factor for stress reduction and for the pattern of stress distribution, especially in the root.</p>\",\"PeriodicalId\":22311,\"journal\":{\"name\":\"The Bulletin of Tokyo Medical and Dental University\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bulletin of Tokyo Medical and Dental University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Tokyo Medical and Dental University","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

应力由咬合力产生,并沿牙齿向PDL结构方向分布。研究由牙釉质、牙本质、牙髓和薄牙骨质层组成的复杂牙齿结构及其在应力分布中的作用是有意义的。本研究采用三维有限元方法,分析牙体和牙盘结构在应力分布中的作用。建立了下颌第一磨牙有限元模型。通过Pressensor测量咬合力,并将这些咬合力值编程加载到模型的咬合面上。结果用应力等值线和主应力图表示。应力从咬合面向牙本质和牙髓的颈部分布时减小。而在冠下半部分的牙釉质层中,应力,尤其是压应力,在同一方向上逐渐增大。在应力表现模式上,应力向冠下半部分周围明显向外分布。这导致了均匀大小的主应力的所有方面的近根和远根。两根应力一般为压应力。当比较根面和牙槽壁之间采样点的应力值时,发现牙周韧带的主应力均小于根面。结果表明,牙髓、牙本质和牙髓在应力减轻方面具有协同作用;牙釉质、牙本质和牙髓的排列顺序影响应力分布模式。牙齿结构的不同材料特性被认为是减少应力和应力分布模式的重要因素,特别是在牙根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress of tooth and PDL structure created by bite force.

Stress is created by the bite force and distributed along the tooth towards the PDL structure. It is of interest to investigate the complex tooth structure, consisting of enamel, dentine, pulp, and thin cementum layer and how it functions in stress distribution. This study was intended to analyze the role of the tooth and PDL structures in stress distribution, by using a three-dimensional finite element method. A mandibular first molar was constructed for the finite element model. The bite forces were measured by Pressensor, and these bite force values were programmed to load down upon the occlusal surface of the model. The results were expressed by stress contours and principal stress graphs. The stress was found to decrease as it distributed from the occlusal surface towards the cervical portion in the dentine and the pulp. In contrast, the stress, especially a compressive stress, increased gradually in the enamel layer in the lower half of the crown, in the same direction. It was apparent in displayed pattern of stress that the stress distributed outward towards the surrounding portion of the lower half of the crown. This resulted in a uniform magnitude of the principal stresses for all aspects of the mesial and distal roots. The stresses of both roots were generally compressive stress. When comparing the stress values of sampling points positioned between the root surfaces and the periphery of the PDL (the alveolar wall), all principal stresses for those of the PDL (periodontal ligament) were less than those of the root surfaces. These findings revealed that the PDL, the dentine, and the pulp functioned in cooperation in stress reduction; and the sequences of enamel, dentine, and pulp influenced the pattern of stress distribution. The different material properties of the tooth structure in sequence was considered a very important factor for stress reduction and for the pattern of stress distribution, especially in the root.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信