{"title":"精确和准确的骨标记表征手和手腕的位置","authors":"C.F. Small, D.R. Pichora, J.T. Bryant, P.M. Griffiths","doi":"10.1016/0141-5425(93)90073-8","DOIUrl":null,"url":null,"abstract":"<div><p>Characterization of the motion of the hand and wrist requires reference to the underlying bones which, for three-dimensional analyses, are assumed to be rigid bodies. Stereoradiogrammetric techniques involving the identification of prominent bone landmarks have been used as the standard against which surface markers used for <em>in vivo</em> testing have been evaluated. The precision and accuracy with which the 3D positions of bone landmarks in the hand and wrist could be determined was evaluated in a small inter-observer and inter-cadaver study and compared to the precision and accuracy with which implanted lead markers could be located. A subset of landmarks suitable for evaluating wrist and metacarpal-phalangeal joint motion was identified; the mean precison for identifying these points was better than 1.1 mm in all hand positions with a mean inter-observer accuracy of 2.3 mm. These values show that the average uncertainty in locating bone landmarks is at best roughly twice that for implanted markers.</p></div>","PeriodicalId":75992,"journal":{"name":"Journal of biomedical engineering","volume":"15 5","pages":"Pages 371-378"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0141-5425(93)90073-8","citationCount":"25","resultStr":"{\"title\":\"Precision and accuracy of bone landmarks in characterizing hand and wrist position\",\"authors\":\"C.F. Small, D.R. Pichora, J.T. Bryant, P.M. Griffiths\",\"doi\":\"10.1016/0141-5425(93)90073-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Characterization of the motion of the hand and wrist requires reference to the underlying bones which, for three-dimensional analyses, are assumed to be rigid bodies. Stereoradiogrammetric techniques involving the identification of prominent bone landmarks have been used as the standard against which surface markers used for <em>in vivo</em> testing have been evaluated. The precision and accuracy with which the 3D positions of bone landmarks in the hand and wrist could be determined was evaluated in a small inter-observer and inter-cadaver study and compared to the precision and accuracy with which implanted lead markers could be located. A subset of landmarks suitable for evaluating wrist and metacarpal-phalangeal joint motion was identified; the mean precison for identifying these points was better than 1.1 mm in all hand positions with a mean inter-observer accuracy of 2.3 mm. These values show that the average uncertainty in locating bone landmarks is at best roughly twice that for implanted markers.</p></div>\",\"PeriodicalId\":75992,\"journal\":{\"name\":\"Journal of biomedical engineering\",\"volume\":\"15 5\",\"pages\":\"Pages 371-378\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0141-5425(93)90073-8\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0141542593900738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0141542593900738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precision and accuracy of bone landmarks in characterizing hand and wrist position
Characterization of the motion of the hand and wrist requires reference to the underlying bones which, for three-dimensional analyses, are assumed to be rigid bodies. Stereoradiogrammetric techniques involving the identification of prominent bone landmarks have been used as the standard against which surface markers used for in vivo testing have been evaluated. The precision and accuracy with which the 3D positions of bone landmarks in the hand and wrist could be determined was evaluated in a small inter-observer and inter-cadaver study and compared to the precision and accuracy with which implanted lead markers could be located. A subset of landmarks suitable for evaluating wrist and metacarpal-phalangeal joint motion was identified; the mean precison for identifying these points was better than 1.1 mm in all hand positions with a mean inter-observer accuracy of 2.3 mm. These values show that the average uncertainty in locating bone landmarks is at best roughly twice that for implanted markers.