帕金森病的生长因子

Klaus Unsicker
{"title":"帕金森病的生长因子","authors":"Klaus Unsicker","doi":"10.1016/0955-2235(94)90018-3","DOIUrl":null,"url":null,"abstract":"<div><p>The etiology of Parkinson's disease, one of the most frequent neurodegenerative disorders in human, is unknown. New hopes concerning satisfactory therapies include transplants of autologous adrenal medullary chromaffin tissue, fetal mesencephalic dopaminergic neurons, and local application of growth factors with a neurotrophic capacity. A large body of evidence supports the notion that neurons require trophic support not only during a limited period of ontogenesis, but during their whole lifespan. Relevant molecules promote survival, transmitter synthesis and other differentiated properties, and become crucially important when a neuron is metabolically or toxically impaired. Several molecules, most of which occur in the striatum and the substantia nigra, have been identified that protect lesioned dopaminergic nigrostriatal neurons in culture or in animal models of Parkinson's disease. These include members of the neurotrophin, fibroblast growth factor, and insulin-like growth factor families as well as epidermal growth factor/transforming growth factor alpha, interleukins and ciliary neurotrophic factor. Whether their effects are merely pharmacological, or reflect a physiological role in the nigrostriatal system, is unclear as yet. This article reviews experiments that document the trophic effects of these factors on dopaminergic neurons and discusses their possible physiological and therapeutic relevance.</p></div>","PeriodicalId":77335,"journal":{"name":"Progress in growth factor research","volume":"5 1","pages":"Pages 73-87"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0955-2235(94)90018-3","citationCount":"57","resultStr":"{\"title\":\"Growth factors in Parkinson's disease\",\"authors\":\"Klaus Unsicker\",\"doi\":\"10.1016/0955-2235(94)90018-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The etiology of Parkinson's disease, one of the most frequent neurodegenerative disorders in human, is unknown. New hopes concerning satisfactory therapies include transplants of autologous adrenal medullary chromaffin tissue, fetal mesencephalic dopaminergic neurons, and local application of growth factors with a neurotrophic capacity. A large body of evidence supports the notion that neurons require trophic support not only during a limited period of ontogenesis, but during their whole lifespan. Relevant molecules promote survival, transmitter synthesis and other differentiated properties, and become crucially important when a neuron is metabolically or toxically impaired. Several molecules, most of which occur in the striatum and the substantia nigra, have been identified that protect lesioned dopaminergic nigrostriatal neurons in culture or in animal models of Parkinson's disease. These include members of the neurotrophin, fibroblast growth factor, and insulin-like growth factor families as well as epidermal growth factor/transforming growth factor alpha, interleukins and ciliary neurotrophic factor. Whether their effects are merely pharmacological, or reflect a physiological role in the nigrostriatal system, is unclear as yet. This article reviews experiments that document the trophic effects of these factors on dopaminergic neurons and discusses their possible physiological and therapeutic relevance.</p></div>\",\"PeriodicalId\":77335,\"journal\":{\"name\":\"Progress in growth factor research\",\"volume\":\"5 1\",\"pages\":\"Pages 73-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0955-2235(94)90018-3\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in growth factor research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0955223594900183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in growth factor research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0955223594900183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

帕金森病是人类最常见的神经退行性疾病之一,其病因尚不清楚。令人满意的治疗方法的新希望包括自体肾上腺髓质染色质组织移植、胎儿中脑多巴胺能神经元移植和局部应用具有神经营养能力的生长因子。大量证据表明,神经元不仅在有限的个体发育时期需要营养支持,而且在整个生命周期中都需要营养支持。相关分子促进存活、递质合成和其他分化特性,在神经元代谢或毒性受损时变得至关重要。在帕金森病的培养或动物模型中,已经确定了几种分子,其中大部分发生在纹状体和黑质中,可以保护受损的多巴胺能黑质纹状体神经元。这些包括神经营养因子、成纤维细胞生长因子和胰岛素样生长因子家族成员,以及表皮生长因子/转化生长因子α、白细胞介素和纤毛神经营养因子。它们的作用仅仅是药理作用,还是反映了黑质纹状体系统的生理作用,目前还不清楚。本文回顾了这些因素对多巴胺能神经元的营养作用的实验,并讨论了它们可能的生理和治疗相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth factors in Parkinson's disease

The etiology of Parkinson's disease, one of the most frequent neurodegenerative disorders in human, is unknown. New hopes concerning satisfactory therapies include transplants of autologous adrenal medullary chromaffin tissue, fetal mesencephalic dopaminergic neurons, and local application of growth factors with a neurotrophic capacity. A large body of evidence supports the notion that neurons require trophic support not only during a limited period of ontogenesis, but during their whole lifespan. Relevant molecules promote survival, transmitter synthesis and other differentiated properties, and become crucially important when a neuron is metabolically or toxically impaired. Several molecules, most of which occur in the striatum and the substantia nigra, have been identified that protect lesioned dopaminergic nigrostriatal neurons in culture or in animal models of Parkinson's disease. These include members of the neurotrophin, fibroblast growth factor, and insulin-like growth factor families as well as epidermal growth factor/transforming growth factor alpha, interleukins and ciliary neurotrophic factor. Whether their effects are merely pharmacological, or reflect a physiological role in the nigrostriatal system, is unclear as yet. This article reviews experiments that document the trophic effects of these factors on dopaminergic neurons and discusses their possible physiological and therapeutic relevance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信