PDGF受体的信号转导

Lena Claesson-Welsh
{"title":"PDGF受体的信号转导","authors":"Lena Claesson-Welsh","doi":"10.1016/0955-2235(94)90016-7","DOIUrl":null,"url":null,"abstract":"<div><p>The three isoforms of PDGF bind with different affinities to two related tyrosine kinase receptors, denoted the PDGF α- and β-receptors. Ligand binding induces receptor dimerization, creating receptor homo- or heterodimers. Dimerization is accompanied by, and might be a prerequisite for, receptor autophosphorylation and kinase activation. Receptor autophosphorylation serves to regulate the kinase activity and to create binding sites on the receptor molecule for downstream signalling components. The activities of the signalling components are ultimately manifested as specific biological responses. All the currently described PDGF receptor-binding components, e.g. phospholipase C-γ, members of the src family of cytoplasmic tyrosine kinases, the rasGT-Pase activating protein and p85, the regulatory subunit of phosphatidylinositol 3′ kinase, contain a conserved src homology 2-domain, through which the association with the receptor takes place. The receptor-binding components appear to either possess an intrinsic enzymatic activity, or they function as adaptors, which may complex with catalytically active components. For most receptor-binding components, there is insufficient understanding of how binding to the receptor affects the catalytic function. Certain of these components become tyrosine-phosphorylated, i.e. they are substrates for the receptor tyrosine kinase. Moreover, the change in subcellular localization, which most of the receptor binding components undergo in conjunction with receptor binding, could play a critical role. The current efforts of many laboratories are aimed at delineating different PDGF receptor signal transduction pathways and what roles the different receptor-binding components play in the establishment of these pathways.</p></div>","PeriodicalId":77335,"journal":{"name":"Progress in growth factor research","volume":"5 1","pages":"Pages 37-54"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0955-2235(94)90016-7","citationCount":"101","resultStr":"{\"title\":\"Signal transduction by the PDGF receptors\",\"authors\":\"Lena Claesson-Welsh\",\"doi\":\"10.1016/0955-2235(94)90016-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The three isoforms of PDGF bind with different affinities to two related tyrosine kinase receptors, denoted the PDGF α- and β-receptors. Ligand binding induces receptor dimerization, creating receptor homo- or heterodimers. Dimerization is accompanied by, and might be a prerequisite for, receptor autophosphorylation and kinase activation. Receptor autophosphorylation serves to regulate the kinase activity and to create binding sites on the receptor molecule for downstream signalling components. The activities of the signalling components are ultimately manifested as specific biological responses. All the currently described PDGF receptor-binding components, e.g. phospholipase C-γ, members of the src family of cytoplasmic tyrosine kinases, the rasGT-Pase activating protein and p85, the regulatory subunit of phosphatidylinositol 3′ kinase, contain a conserved src homology 2-domain, through which the association with the receptor takes place. The receptor-binding components appear to either possess an intrinsic enzymatic activity, or they function as adaptors, which may complex with catalytically active components. For most receptor-binding components, there is insufficient understanding of how binding to the receptor affects the catalytic function. Certain of these components become tyrosine-phosphorylated, i.e. they are substrates for the receptor tyrosine kinase. Moreover, the change in subcellular localization, which most of the receptor binding components undergo in conjunction with receptor binding, could play a critical role. The current efforts of many laboratories are aimed at delineating different PDGF receptor signal transduction pathways and what roles the different receptor-binding components play in the establishment of these pathways.</p></div>\",\"PeriodicalId\":77335,\"journal\":{\"name\":\"Progress in growth factor research\",\"volume\":\"5 1\",\"pages\":\"Pages 37-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0955-2235(94)90016-7\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in growth factor research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0955223594900167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in growth factor research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0955223594900167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

摘要

PDGF的三种异构体以不同的亲和力结合两种相关的酪氨酸激酶受体,分别为PDGF α-和β-受体。配体结合诱导受体二聚化,产生受体同二聚体或异二聚体。二聚化伴随着受体自磷酸化和激酶活化,并且可能是其先决条件。受体自磷酸化作用调节激酶活性,并在受体分子上为下游信号成分创造结合位点。信号组分的活动最终表现为特定的生物反应。目前所描述的所有PDGF受体结合成分,如磷脂酶C-γ、胞质酪氨酸激酶src家族成员、rasGT-Pase激活蛋白和磷脂酰肌醇3 '激酶的调控亚基p85,都含有一个保守的src同源2结构域,通过该结构域与受体发生关联。受体结合组分似乎要么具有内在的酶活性,要么具有适配器的功能,它可能与催化活性组分复合。对于大多数受体结合组分,对与受体结合如何影响催化功能的理解不足。这些成分中的某些被酪氨酸磷酸化,即它们是酪氨酸激酶受体的底物。此外,亚细胞定位的变化(大多数受体结合成分与受体结合一起经历)可能起关键作用。目前许多实验室的努力都旨在描述不同的PDGF受体信号转导途径,以及不同的受体结合成分在这些途径的建立中起什么作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal transduction by the PDGF receptors

The three isoforms of PDGF bind with different affinities to two related tyrosine kinase receptors, denoted the PDGF α- and β-receptors. Ligand binding induces receptor dimerization, creating receptor homo- or heterodimers. Dimerization is accompanied by, and might be a prerequisite for, receptor autophosphorylation and kinase activation. Receptor autophosphorylation serves to regulate the kinase activity and to create binding sites on the receptor molecule for downstream signalling components. The activities of the signalling components are ultimately manifested as specific biological responses. All the currently described PDGF receptor-binding components, e.g. phospholipase C-γ, members of the src family of cytoplasmic tyrosine kinases, the rasGT-Pase activating protein and p85, the regulatory subunit of phosphatidylinositol 3′ kinase, contain a conserved src homology 2-domain, through which the association with the receptor takes place. The receptor-binding components appear to either possess an intrinsic enzymatic activity, or they function as adaptors, which may complex with catalytically active components. For most receptor-binding components, there is insufficient understanding of how binding to the receptor affects the catalytic function. Certain of these components become tyrosine-phosphorylated, i.e. they are substrates for the receptor tyrosine kinase. Moreover, the change in subcellular localization, which most of the receptor binding components undergo in conjunction with receptor binding, could play a critical role. The current efforts of many laboratories are aimed at delineating different PDGF receptor signal transduction pathways and what roles the different receptor-binding components play in the establishment of these pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信