{"title":"从分子动力学模拟中收集的镁的拉伸孪晶微观力学","authors":"Ramin Aghababaei, Shailendra P. Joshi","doi":"10.1016/j.actamat.2014.01.014","DOIUrl":null,"url":null,"abstract":"<div><p>This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures <span><math><mrow><mi>T</mi><mo>=</mo><mn>5</mn><mspace></mspace><mi>K</mi></mrow></math></span> and <span><math><mrow><mn>300</mn><mspace></mspace><mi>K</mi></mrow></math></span>. A detailed atomistic analysis reveals that tensile loading along the <em>c</em>-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal <span><math><mrow><mo>〈</mo><mi>c</mi><mo>+</mo><mi>a</mi><mo>〉</mo></mrow></math></span> planes, followed by the formation of a <span><math><mrow><mo>{</mo><mn>11</mn><mover><mrow><mn>2</mn></mrow><mrow><mo>¯</mo></mrow></mover><mn>1</mn><mo>}</mo></mrow></math></span> twin embryo and basal dislocation. These mechanisms aid the formation of <span><math><mrow><mo>{</mo><mn>10</mn><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover><mn>2</mn><mo>}</mo></mrow></math></span> twins, which evolve rapidly while <span><math><mrow><mo>{</mo><mn>11</mn><mover><mrow><mn>2</mn></mrow><mrow><mo>¯</mo></mrow></mover><mn>1</mn><mo>}</mo></mrow></math></span> twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that <span><math><mrow><mo>{</mo><mn>10</mn><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover><mn>2</mn><mo>}</mo></mrow></math></span> v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent.</p></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"69 ","pages":"Pages 326-342"},"PeriodicalIF":9.3000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.actamat.2014.01.014","citationCount":"51","resultStr":"{\"title\":\"Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations\",\"authors\":\"Ramin Aghababaei, Shailendra P. Joshi\",\"doi\":\"10.1016/j.actamat.2014.01.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures <span><math><mrow><mi>T</mi><mo>=</mo><mn>5</mn><mspace></mspace><mi>K</mi></mrow></math></span> and <span><math><mrow><mn>300</mn><mspace></mspace><mi>K</mi></mrow></math></span>. A detailed atomistic analysis reveals that tensile loading along the <em>c</em>-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal <span><math><mrow><mo>〈</mo><mi>c</mi><mo>+</mo><mi>a</mi><mo>〉</mo></mrow></math></span> planes, followed by the formation of a <span><math><mrow><mo>{</mo><mn>11</mn><mover><mrow><mn>2</mn></mrow><mrow><mo>¯</mo></mrow></mover><mn>1</mn><mo>}</mo></mrow></math></span> twin embryo and basal dislocation. These mechanisms aid the formation of <span><math><mrow><mo>{</mo><mn>10</mn><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover><mn>2</mn><mo>}</mo></mrow></math></span> twins, which evolve rapidly while <span><math><mrow><mo>{</mo><mn>11</mn><mover><mrow><mn>2</mn></mrow><mrow><mo>¯</mo></mrow></mover><mn>1</mn><mo>}</mo></mrow></math></span> twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that <span><math><mrow><mo>{</mo><mn>10</mn><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover><mn>2</mn><mo>}</mo></mrow></math></span> v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent.</p></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"69 \",\"pages\":\"Pages 326-342\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.actamat.2014.01.014\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645414000238\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645414000238","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 51
摘要
本文讨论了从分子动力学(MD)模拟中提取的镁(Mg)中拉伸孪晶的粗粒度微观力学。我们在温度T=5K和300K下对具有初始理想缺陷结构的Mg单晶取向进行了MD模拟。详细的原子分析表明,沿缺陷晶体c轴的拉伸载荷在一阶锥体< c+ A >平面上导致缺陷之前的初始不完全滑移,随后形成{112¯1}孪生胚和基底位错。这些机制有助于{101¯2}双胞胎的形成,而{112¯1}双胞胎则迅速进化。我们展示了变形引起的孪晶结构演变的微观力学图像,该图像通过在开放可视化工具中结合孪晶取向分析(TOA)方案进行跟踪。从该分析中提取的体积分数(vf)和孪晶数目对整体塑性应变的函数依赖关系为构建孪晶在成核、生长和聚并方面的演化动力学规律提供了依据。初步结果表明,在室温下,{101¯2}v.f.的演化主要是由存在缺陷的孪晶生长主导的,它可能不是很强的速率依赖。
Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations
This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures and . A detailed atomistic analysis reveals that tensile loading along the c-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal planes, followed by the formation of a twin embryo and basal dislocation. These mechanisms aid the formation of twins, which evolve rapidly while twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.